2 resultados para Pelargonium graveolens

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anacardic acids, a class of secondary compounds derived from fatty acids, are found in a variety of dicotyledonous families. Pest resistance (e.g., spider mites and aphids) in Pelargonium xhortorum (geranium) is associated with high levels (approximately 81%) of unsaturated 22:1 omega 5 and 24:1 omega 5 anacardic acids in the glandular trichome exudate. A single dominant locus controls the production of these omega 5 anacardic acids, which arise from novel 16:1 delta 11 and 18:1 delta 13 fatty acids. We describe the isolation and characterization of a cDNA encoding a unique delta 9 14:0-acyl carrier protein fatty acid desaturase. Several lines of evidence indicated that expression of this desaturase leads to the production of the omega 5 anacardic acids involved in pest resistance. First, its expression was found in pest-resistant, but not suspectible, plants and its expression followed the production of the omega 5 anacardic acids in segregating populations. Second, its expression and the occurrence of the novel 16:1 delta 11 and 18:1 delta 13 fatty acids and the omega 5 anacardic acids were specific to tall glandular trichomes. Third, assays of the recombinant protein demonstrated that this desaturase produced the 14:1 delta 9 fatty acid precursor to the novel 16:1 delta 11 and 18:1 delta 13 fatty acids. Based on our genetic and biochemical studies, we conclude that expression of this delta 9 14:0-ACP desaturase gene is required for the production of omega 5 anacardic acids that have been shown to be necessary for pest resistance in geranium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mannitol is the most abundant sugar alcohol in nature, occurring in bacteria, fungi, lichens, and many species of vascular plants. Celery (Apium graveolens L.), a plant that forms mannitol photosynthetically, has high photosynthetic rates thought to results from intrinsic differences in the biosynthesis of hexitols vs. sugars. Celery also exhibits high salt tolerance due to the function of mannitol as an osmoprotectant. A mannitol catabolic enzyme that oxidizes mannitol to mannose (mannitol dehydrogenase, MTD) has been identified. In celery plants, MTD activity and tissue mannitol concentration are inversely related. MTD provides the initial step by which translocated mannitol is committed to central metabolism and, by regulating mannitol pool size, is important in regulating salt tolerance at the cellular level. We have now isolated, sequenced, and characterized a Mtd cDNA from celery. Analyses showed that Mtd RNA was more abundant in cells grown on mannitol and less abundant in salt-stressed cells. A protein database search revealed that the previously described ELI3 pathogenesis-related proteins from parsley and Arabidopsis are MTDs. Treatment of celery cells with salicylic acid resulted in increased MTD activity and RNA. Increased MTD activity results in an increased ability to utilize mannitol. Among other effects, this may provide an additional source of carbon and energy for response to pathogen attack. These responses of the primary enzyme controlling mannitol pool size reflect the importance of mannitol metabolism in plant responses to divergent types of environmental stress.