2 resultados para Pear.
em National Center for Biotechnology Information - NCBI
Resumo:
Arabinogalactan proteins (AGPs) are proteoglycans of higher plants, which are implicated in growth and development. We recently have shown that two AGPs, NaAGP1 (from Nicotiana alata styles) and PcAGP1 (from Pyrus communis cell suspension culture), are modified by the addition of a glycosylphosphatidylinositol (GPI) anchor. However, paradoxically, both AGPs were buffer soluble rather than membrane associated. We now show that pear suspension cultured cells also contain membrane-bound GPI-anchored AGPs. This GPI anchor has the minimal core oligosaccharide structure, d-Manα(1–2)-d-Manα(1–6)-d-Manα(1–4)-d-GlcN-inositol, which is consistent with those found in animals, protozoa, and yeast, but with a partial β(1–4)-galactosyl substitution of the 6-linked Man residue, and has a phosphoceramide lipid composed primarily of phytosphingosine and tetracosanoic acid. The secreted form of PcAGP1 contains a truncated GPI lacking the phosphoceramide moiety, suggesting that it is released from the membrane by the action of a phospholipase D. The implications of these findings are discussed in relation to the potential mechanisms by which GPI-anchored AGPs may be involved in signal transduction pathways.
Resumo:
In spite of much effort, no one has succeeded in isolating and characterizing the enzyme(s) responsible for synthesis of cellulose, the major cell wall polymer of plants. We have characterized two cotton (Gossypium hirsutum) cDNA clones and identified one rice (Oryza sativa) cDNA that are homologs of the bacterial celA genes that encode the catalytic subunit of cellulose synthase. Three regions in the deduced amino acid sequences of the plant celA gene products are conserved with respect to the proteins encoded by bacterial celA genes. Within these conserved regions, there are four highly conserved subdomains previously suggested to be critical for catalysis and/or binding of the substrate UDP-glucose (UDP-Glc). An overexpressed DNA segment of the cotton celA1 gene encodes a polypeptide fragment that spans these domains and binds UDP-Glc, while a similar fragment having one of these domains deleted does not. The plant celA genes show little homology at the N- and C-terminal regions and also contain two internal insertions of sequence, one conserved and one hypervariable, that are not found in the bacterial gene sequences. Cotton celA1 and celA2 genes are expressed at high levels during active secondary wall cellulose synthesis in developing cotton fibers. Genomic Southern blot analyses in cotton demonstrate that celA forms a small gene family.