8 resultados para Peak periods.

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The postinhibitory rebound excitation is an intrinsic property of thalamic and cortical neurons that is implicated in a variety of normal and abnormal operations of neuronal networks, such as slow or fast brain rhythms during different states of vigilance as well as seizures. We used dual simultaneous intracellular recordings of thalamocortical neurons from the ventrolateral nucleus and neurons from the motor cortex, together with thalamic and cortical field potentials, to investigate the temporal relations between thalamic and cortical events during the rebound excitation that follows prolonged periods of stimulus-induced inhibition. Invariably, the rebound spike-bursts in thalamocortical cells occurred before the rebound depolarization in cortical neurons and preceded the peak of the depth-negative, rebound field potential in cortical areas. Also, the inhibitory-rebound sequences were more pronounced and prolonged in cortical neurons when elicited by thalamic stimuli, compared with cortical stimuli. The role of thalamocortical loops in the rebound excitation of cortical neurons was shown further by the absence of rebound activity in isolated cortical slabs. However, whereas thalamocortical neurons remained hyperpolarized after rebound excitation, because of the prolonged spike-bursts in inhibitory thalamic reticular neurons, the rebound depolarization in cortical neurons was prolonged, suggesting the role of intracortical excitatory circuits in this sustained activity. The role of intrathalamic events in triggering rebound cortical activity should be taken into consideration when analyzing information processes at the cortical level; at each step, corticothalamic volleys can set into action thalamic inhibitory neurons, leading to rebound spike-bursts that are transferred back to the cortex, thus modifying cortical activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of diagnostic ultrasound with gas bodies produces a useful contrast effect in medical images, but the same interaction also represents a mechanism for bioeffects. Anesthetized hairless mice were scanned by using a 2.5-MHz transducer (610-ns pulses with 3.6-kHz repetition frequency and 61-Hz frame rate) after injection of Optison and Evans blue dye. Petechial hemorrhages (PHs) in intestine and abdominal muscle were counted 15 min after exposure to characterize capillary rupture, and Evans blue extravasation was evaluated in samples of muscle tissue. For 5 ml⋅kg-1 contrast agent and exposure to 10 alternating 10-s on and off periods, PH counts in muscle were approximately proportional to the square of peak negative pressure amplitude and were statistically significant above 0.64 MPa. PH counts in intestine and Evans blue extravasation into muscle tissue were significant above 1.0 MPa. The PH effect in muscle was proportional to contrast dose and was statistically significant for the lowest dose of 0.05 ml⋅kg-1. The effects decreased nearly to sham levels if the exposure was delayed 5 min. The PH effect in abdominal muscle was significant and statistically indistinguishable for uninterrupted 100-s exposure, 10-s exposure, 100 scans repeated at 1 Hz, and even for a single scan. The results confirms a previous report of PH induction by diagnostic ultrasound with contrast agent in mammalian skeletal muscle [Skyba, D. M., Price, R. J., Linka, A. Z., Skalak, T. C. & Kaul, S. (1998) Circulation 98, 290–293].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of the quantum efficiencies of photosynthetic electron transport through photosystem II (φPSII) and CO2 assimilation (φCO2) were made simultaneously on leaves of maize (Zea mays) crops in the United Kingdom during the early growing season, when chilling conditions were experienced. The activities of a range of enzymes involved with scavenging active O2 species and the levels of key antioxidants were also measured. When leaves were exposed to low temperatures during development, the ratio of φPSII/φCO2 was elevated, indicating the operation of an alternative sink to CO2 for photosynthetic reducing equivalents. The activities of ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and superoxide dismutase and the levels of ascorbate and α-tocopherol were also elevated during chilling periods. This supports the hypothesis that the relative flux of photosynthetic reducing equivalents to O2 via the Mehler reaction is higher when leaves develop under chilling conditions. Lipoxygenase activity and lipid peroxidation were also increased during low temperatures, suggesting that lipoxygenase-mediated peroxidation of membrane lipids contributes to the oxidative damage occurring in chill-stressed leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a new NMR correlation-peak imaging technique, we were able to investigate noninvasively the spatial distribution of carbohydrates and amino acids in the hypocotyl of castor bean seedlings. In addition to the expected high sucrose concentration in the phloem area of the vascular bundles, we could also observe high levels of sucrose in the cortex parenchyma, but low levels in the pith parenchyma. In contrast, the glucose concentration was found to be lower in the cortex parenchyma than in the pith parenchyma. Glutamine and/or glutamate was detected in the cortex parenchyma and in the vascular bundles. Lysine and arginine were mainly visible in the vascular bundles, whereas valine was observed in the cortex parenchyma, but not in the vascular bundles. Although the physiological significance of these metabolite distribution patterns is not known, they demonstrate the potential of spectroscopic NMR imaging to study noninvasively the physiology and spatial metabolic heterogeneity of living plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retinoblastoma (RB) gene specifies a nuclear phosphoprotein (pRb 105), which is a prototype tumor suppressor inactivated in a variety of human tumors. Recent studies suggest that RB is also involved in embryonic development of murine central nervous and hematopoietic systems. We have investigated RB expression and function in human adult hematopoiesis--i.e., in liquid suspension culture of purified quiescent hematopoietic progenitor cells (HPCs) induced by growth factor stimulus to proliferation and unilinage differentiation/maturation through the erythroid or granulocytic lineage. In the initial HPC differentiation stages, the RB gene is gradually induced at the mRNA and protein level in both erythroid and granulopoietic cultures. In late HPC differentiation and then precursor maturation, RB gene expression is sustained in the erythroid lineage, whereas it is sharply downmodulated in the granulocytic series. Functional studies were performed by treatment of HPC differentiation culture with phosphorothioate antisense oligomer targeting Rb mRNA; coherent with the expression pattern, oligomer treatment of late HPCs causes a dose-dependent and selective inhibition of erythroid colony formation. These observations suggest that the RB gene plays an erythroid- and stage-specific functional role in normal adult hematopoiesis, particularly at the level of late erythroid HPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In inflammatory states, nitric oxide (.NO) may be synthesized from precursor L-arginine via inducible .NO synthase (iNOS) in large amounts for prolonged periods of time. When .NO acts as an effector molecule under these conditions, it may be toxic to cells by inhibition of iron-containing enzymes or initiation of DNA single-strand breaks. In contrast to molecular targets of .NO, considerably less is known regarding mechanisms by which cells become resistant to .NO. Metallothionein (MT), the major protein thiol induced in cells exposed to cytokines and bacterial products, is capable of forming iron-dinitrosyl thiolates in vitro. Therefore, we tested the hypothesis that overexpression of MT reduces the sensitivity of NIH 3T3 cells to the .NO donor, S-nitrosoacetylpenicillamine (SNAP), and to .NO released from cells (NIH 3T3-DFG-iNOS) after infection with a retroviral vector expressing human iNOS gene. There was a 4-fold increase in MT in cells transfected with the mouse MT-1 gene (NIH 3T3/MT) compared to cells transfected with the promoter-free inverted gene (NIH 3T3/TM). NIH 3T3/MT cells were more resistant than NIH 3T3/TM cells to the cytotoxic effects of SNAP (0.1-1.0 mM) or .NO released from NIH 3T3-DFG-iNOS cells. A brief (1 h) exposure to 10 mM SNAP caused DNA single-strand breaks that were 9-fold greater in NIH 3T3/TM compared to NIH 3T3/MT cells. Electron paramagnetic resonance spectroscopy of NIH 3T3 cells revealed a greater peak at g = 2.04 (e.g., iron-dinitrosyl complex) in NIH 3T3/MT than NIH 3T3/TM cells. These data are consistent with a role for cytoplasmic MT in interacting with .NO and reducing .NO-induced cyto- and nuclear toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier work showed that playbacks of conspecific song induce expression of the immediate early gene ZENK in the caudo-medial neostriatum (NCM) of awake male zebra finches and that this response disappears with repeated presentations of the same stimulus. In the present study, we investigated whether repetitions of a song stimulus also elicited a decrement in the electrophysiological responses in the NCM neurons of these birds. Multiunit auditory responses in NCM were initially vigorous, but their amplitude decreased (habituated) rapidly to repeated stimulation, declining to about 40% of the initial response during the first 50 iterations. A similar time course of change was seen at the single unit level. This habituation occurred specifically for each song presented but did not occur when pure tones were used as a stimulus. Habituation to conspecific, but not heterospecific, song was retained for 20 h or longer. Injections of inhibitors of protein or RNA synthesis at the recording site did not affect the initial habituation to a novel stimulus, but these drugs blocked the long-term habituation when injected at 0.5-3 h and at 5.5-7 h after the first exposure to the stimulus. Thus, at least two waves of gene induction appear to be necessary for long-lasting habituation to a particular song.