30 resultados para Pea starch
em National Center for Biotechnology Information - NCBI
Resumo:
Two distinct types of debranching enzymes have been identified in developing pea (Pisum sativum L.) embryos using native gel analysis and tests of substrate preference on purified or partially purified activities. An isoamylase-like activity capable of hydrolyzing amylopectin and glycogen but not pullulan is present throughout development and is largely or entirely confined to the plastid. Activities capable of hydrolyzing pullulan are present both inside and outside of the plastid, and extraplastidial activity increases relative to the plastidial activity during development. Both types of debranching enzyme are also present in germinating embryos. We argue that debranching enzymes are likely to have a role in starch metabolism in the plastid of the developing embryo and in starch degradation during germination.
Resumo:
We purified from pea (Pisum sativum) tissue an ≈40 kDa reversibly glycosylated polypeptide (RGP1) that can be glycosylated by UDP-Glc, UDP-Xyl, or UDP-Gal, and isolated a cDNA encoding it, apparently derived from a single-copy gene (Rgp1). Its predicted translation product has 364 aminoacyl residues and molecular mass of 41.5 kDa. RGP1 appears to be a membrane-peripheral protein. Immunogold labeling localizes it specifically to trans-Golgi dictyosomal cisternae. Along with other evidence, this suggests that RGP1 is involved in synthesis of xyloglucan and possibly other hemicelluloses. Corn (Zea mays) contains a biochemically similar and structurally homologous RGP1, which has been thought (it now seems mistakenly) to function in starch synthesis. The expressed sequence database also reveals close homologs of pea Rgp1 in Arabidopsis and rice (Oryza sativa). Rice possesses, in addition, a distinct but homologous sequence (Rgp2). RGP1 provides a polypeptide marker for Golgi membranes that should be useful in plant membrane studies.
Resumo:
Biochemically active wheat thioredoxin h has been overexpressed in the endosperm of transgenic barley grain. Two DNA constructs containing the wheat thioredoxin h gene (wtrxh) were used for transformation; each contained wtrxh fused to an endosperm-specific B1-hordein promoter either with or without a signal peptide sequence for targeting to the protein body. Twenty-two stable, independently transformed regenerable lines were obtained by selecting with the herbicide bialaphos to test for the presence of the bar herbicide resistance gene on a cotransformed plasmid; all were positive for this gene. The presence of wtrxh was confirmed in 20 lines by PCR analysis, and the identity and level of expression of wheat thioredoxin h was assessed by immunoblots. Although levels varied among the different transgenic events, wheat thioredoxin h was consistently highly expressed (up to 30-fold) in the transgenic grain. Transgenic lines transformed with the B1-hordein promoter with a signal peptide sequence produced a higher level of wheat thioredoxin h on average than those without a signal sequence. The overexpression of thioredoxin h in the endosperm of germinated grain effected up to a 4-fold increase in the activity of the starch debranching enzyme, pullulanase (limit dextrinase), the enzyme that specifically cleaves α-1,6 linkages in starch. These results raise the question of how thioredoxin h enhances the activity of pullulanase because it was found that the inhibitor had become inactive before the enzyme showed appreciable activity.
Resumo:
A distinct phosphodiesterasic activity (EC 3.1.4) was found in both mono- and dicotyledonous plants that catalyzes the hydrolytic breakdown of ADPglucose (ADPG) to produce equimolar amounts of glucose-1-phosphate and AMP. The enzyme responsible for this activity, referred to as ADPG pyrophosphatase (AGPPase), was purified over 1,100-fold from barley leaves and subjected to biochemical characterization. The calculated Keq′ (modified equilibrium constant) value for the ADPG hydrolytic reaction at pH 7.0 and 25°C is 110, and its standard-state free-energy change value (ΔG′) is −2.9 kcal/mol (1 kcal = 4.18 kJ). Kinetic analyses showed that, although AGPPase can hydrolyze several low-molecular weight phosphodiester bond-containing compounds, ADPG proved to be the best substrate (Km = 0.5 mM). Pi and phosphorylated compounds such as 3-phosphoglycerate, PPi, ATP, ADP, NADP+, and AMP are inhibitors of AGPPase. Subcellular localization studies revealed that AGPPase is localized exclusively in the plastidial compartment of cultured cells of sycamore (Acer pseudoplatanus L.), whereas it occurs both inside and outside the plastid in barley endosperm. In this paper, evidence is presented that shows that AGPPase, whose activity declines concomitantly with the accumulation of starch during development of sink organs, competes with starch synthase (ADPG:1,4-α-d-glucan 4-α-d-glucosyltransferase; EC 2.4.1.21) for ADPG, thus markedly blocking the starch biosynthesis.
Resumo:
Changes in intracellular calcium in pea root hairs responding to Rhizobium leguminosarum bv. viciae nodulation (Nod) factors were analyzed by using a microinjected calcium-sensitive fluorescent dye (dextran-linked Oregon Green). Within 1–2 min after Nod-factor addition, there was usually an increase in fluorescence, followed about 10 min later by spikes in fluorescence occurring at a rate of about one spike per minute. These spikes, corresponding to an increase in calcium of ≈200 nM, were localized around the nuclear region, and they were similar in terms of lag and period to those induced by Nod factors in alfalfa. Calcium responses were analyzed in nonnodulating pea mutants, representing seven loci that affect early stages of the symbiosis. Mutations affecting three loci (sym8, sym10, and sym19) abolished Nod-factor-induced calcium spiking, whereas a normal response was seen in peas carrying alleles of sym2A, sym7, sym9, and sym30. Chitin oligomers of four or five N-acetylglucosamine residues could also induce calcium spiking, although the response was qualitatively different from that induced by Nod factors; a rapid increase in intracellular calcium was not observed, the period between spikes was lower, and the response was not as sustained. The chitin-oligomer-induced calcium spiking did not occur in nodulation mutants (sym8, sym10, and sym19) that were defective for Nod-factor-induced spiking, suggesting that this response is related to nodulation signaling. From our data and previous observations on the lack of mycorrhizal infection in some of the sym mutants, we propose a model for the potential order of pea nodulation genes in nodulation and mycorrhizal signaling.
Resumo:
Intact amyloplasts from potato (Solanum tuberosum L.) were used to study starch biosynthesis and phosphorylation. Assessed by the degree of intactness and by the level of cytosolic and vacuolar contamination, the best preparations were selected by searching for amyloplasts containing small starch grains. The isolated, small amyloplasts were 80% intact and were free from cytosolic and vacuolar contamination. Biosynthetic studies of the amyloplasts showed that [1-14C]glucose-6-phosphate (Glc-6-P) was an efficient precursor for starch synthesis in a manner highly dependent on amyloplast integrity. Starch biosynthesis from [1-14C]Glc-1-P in small, intact amyloplasts was 5-fold lower and largely independent of amyloplast intactness. When [33P]Glc-6-P was administered to the amyloplasts, radiophosphorylated starch was produced. Isoamylase treatment of the starch followed by high-performance anion-exchange chromatography with pulsed amperometric detection revealed the separated phosphorylated α-glucans. Acid hydrolysis of the phosphorylated α-glucans and high-performance anion-exchange chromatography analyses showed that the incorporated phosphate was preferentially positioned at C-6 of the Glc moiety. The incorporation of radiolabel from Glc-1-P into starch in preparations of amyloplasts containing large grains was independent of intactness and most likely catalyzed by starch phosphorylase bound to naked starch grains.
Resumo:
Treatment of pea (Pisum sativum L.) hypocotyl segments with indole-3-butyric acid, which promotes segment elongation, increased the solubilization of both xyloglucan and cello-oligosaccharides in the apoplast of auxin-treated pea stems. The cello-oligosaccharides were isolated from the apoplastic solution with a charcoal/Celite column and were identified as cellobiose, cellotriose, and cellotetraose after subsequent thin-layer chromatography and paper electrophoresis. Cello-oligosaccharides in the apoplastic fraction were monitored using cellobiose dehydrogenase. Both xyloglucan and cello-oligosaccharides appeared to be formed concurrently within 30 min after treatment with the auxin, and the cello-oligosaccharides increased with stem elongation even after 2 h. The total activity of cellulase did not increase for up to 4 h.
Resumo:
This study identified and purified specific isoamylase- and pullulanase-type starch-debranching enzymes (DBEs) present in developing maize (Zea mays L.) endosperm. The cDNA clone Zpu1 was isolated based on its homology with a rice (Oryza sativa L.) cDNA coding for a pullulanase-type DBE. Comparison of the protein product, ZPU1, with 18 other DBEs identified motifs common to both isoamylase- and pullulanase-type enzymes, as well as class-specific sequence blocks. Hybridization of Zpu1 to genomic DNA defined a single-copy gene, zpu1, located on chromosome 2. Zpu1 mRNA was abundant in endosperm throughout starch biosynthesis, but was not detected in the leaf or the root. Anti-ZPU1 antiserum specifically recognized the approximately 100-kD ZPU1 protein in developing endosperm, but not in leaves. Pullulanase- and isoamylase-type DBEs were purified from extracts of developing maize kernels. The pullulanase-type activity was identified as ZPU1 and the isoamylase-type activity as SU1. Mutations of the sugary1 (su1) gene are known to cause deficiencies of SU1 isoamylase and a pullulanase-type DBE. ZPU1 activity, protein level, and electrophoretic mobility were altered in su1-mutant kernels, indicating that it is the affected pullulanase-type DBE. The Zpu1 transcript levels were equivalent in nonmutant and su1-mutant kernels, suggesting that coordinated regulation of ZPU1 and SU1 occurs posttranscriptionally.
Resumo:
In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii.
Resumo:
Two functionally distinct sets of meristematic cells exist within root tips of pea (Pisum sativum): the root apical meristem, which gives rise to the body of the root; and the root cap meristem, which gives rise to cells that differentiate progressively through the cap and separate ultimately from its periphery as border cells. When a specific number of border cells has accumulated on the root cap periphery, mitosis within the root cap meristem, but not the apical meristem, is suppressed. When border cells are removed by immersion of the root tip in water, a transient induction of mitosis in the root cap meristem can be detected starting within 5 min. A corresponding switch in gene expression throughout the root cap occurs in parallel with the increase in mitosis, and new border cells begin to separate from the root cap periphery within 1 h. The induction of renewed border cell production is inhibited by incubating root tips in extracellular material released from border cells. The results are consistent with the hypothesis that operation of the root cap meristem and consequent turnover of the root cap is self-regulated by a signal from border cells.
Resumo:
We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria.
Resumo:
A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5′-tailed fork was more active than the 3′-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3′ to 5′ along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mm KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 μm and 2.2 μm, respectively) and ATPase (Ki approximately 1.3 μm and 3.0 μm, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.
Resumo:
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.
Resumo:
The sbeIIa and sbeIIb genes, encoding starch-branching enzyme (SBE) IIa and SBEIIb in barley (Hordeum vulgare L.), have been isolated. The 5′ portions of the two genes are strongly divergent, primarily due to the 2064-nucleotide-long intron 2 in sbeIIb. The sequence of this intron shows that it contains a retro-transposon-like element. Expression of sbeIIb but not sbeIIa was found to be endosperm specific. The temporal expression patterns for sbeIIa and sbeIIb were similar and peaked around 12 d after pollination. DNA gel-blot analysis demonstrated that sbeIIa and sbeIIb are both single-copy genes in the barley genome. By fluorescence in situ hybridization, the sbeIIa and sbeIIb genes were mapped to chromosomes 2 and 5, respectively. The cDNA clones for SBEIIa and SBEIIb were isolated and sequenced. The amino acid sequences of SBEIIa and SBEIIb were almost 80% identical. The major structural difference between the two enzymes was the presence of a 94-amino acid N-terminal extension in the SBEIIb precursor. The (β/α)8-barrel topology of the α-amylase superfamily and the catalytic residues implicated in branching enzymes are conserved in both barley enzymes.
Resumo:
To investigate the short-term effect of elevated temperatures on carbon metabolism in growing potato (Solanum tuberosum L.) tubers, developing tubers were exposed to a range of temperatures between 19°C and 37°C. Incorporation of [14C]glucose (Glc) into starch showed a temperature optimum at 25°C. Increasing the temperature from 23°C or 25°C up to 37°C led to decreased labeling of starch, increased labeling of sucrose (Suc) and intermediates of the respiratory pathway, and increased respiration rates. At elevated temperatures, hexose-phosphate levels were increased, whereas the levels of glycerate-3-phosphate (3PGA) and phosphoenolpyruvate were decreased. There was an increase in pyruvate and malate, and a decrease in isocitrate. The amount of adenine diphosphoglucose (ADPGlc) decreased when tubers were exposed to elevated temperatures. There was a strong correlation between the in vivo levels of 3PGA and ADPGlc in tubers incubated at different temperatures, and the decrease in ADPGlc correlated very well with the decrease in the labeling of starch. In tubers incubated at temperatures above 30°C, the overall activities of Suc synthase and ADPGlc pyrophosphorylase declined slightly, whereas soluble starch synthase and pyruvate kinase remained unchanged. Elevated temperatures led to an activation of Suc phosphate synthase involving a change in its kinetic properties. There was a strong correlation between Suc phosphate synthase activation and the in vivo level of Glc-6-phosphate. It is proposed that elevated temperatures lead to increased rates of respiration, and the resulting decline of 3PGA then inhibits ADPGlc pyrophosphorylase and starch synthesis.