12 resultados para Pathologies in ancient buidings
em National Center for Biotechnology Information - NCBI
Resumo:
We analyze the three-dimensional structure of proteins by a computer program that finds regions of sequence that contain module boundaries, defining a module as a segment of polypeptide chain bounded in space by a specific given distance. The program defines a set of “linker regions” that have the property that if an intron were to be placed into each linker region, the protein would be dissected into a set of modules all less than the specified diameter. We test a set of 32 proteins, all of ancient origin, and a corresponding set of 570 intron positions, to ask if there is a statistically significant excess of intron positions within the linker regions. For 28-Å modules, a standard size used historically, we find such an excess, with P < 0.003. This correlation is neither due to a compositional or sequence bias in the linker regions nor to a surface bias in intron positions. Furthermore, a subset of 20 introns, which can be putatively identified as old, lies even more explicitly within the linker regions, with P < 0.0003. Thus, there is a strong correlation between intron positions and three-dimensional structural elements of ancient proteins as expected by the introns-early approach. We then study a range of module diameters and show that, as the diameter varies, significant peaks of correlation appear for module diameters centered at 21.7, 27.6, and 32.9 Å. These preferred module diameters roughly correspond to predicted exon sizes of 15, 22, and 30 residues. Thus, there are significant correlations between introns, modules, and a quantized pattern of the lengths of polypeptide chains, which is the prediction of the “Exon Theory of Genes.”
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.
Resumo:
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Resumo:
Carbonic anhydrases catalyze the reversible hydration of CO2 and are ubiquitous in highly evolved eukaryotes. The recent identification of a third class of carbonic anhydrase (γ class) in a methanoarchaeon and our present finding that the β class also extends into thermophilic species from the Archaea domain led us to initiate a systematic search for these enzymes in metabolically and phylogenetically diverse prokaryotes. Here we show that carbonic anhydrase is widespread in the Archaea and Bacteria domains, and is an ancient enzyme. The occurrence in chemolithoautotrophic species occupying deep branches of the universal phylogenetic tree suggests a role for this enzyme in the proposed autotrophic origin of life. The presence of the β and γ classes in metabolically diverse species spanning the Archaea and Bacteria domains demonstrates that carbonic anhydrases have a far more extensive and fundamental role in prokaryotic biology than previously recognized.
Resumo:
Nuclear-localized mtDNA pseudogenes might explain a recent report describing a heteroplasmic mtDNA molecule containing five linked missense mutations dispersed over the contiguous mtDNA CO1 and CO2 genes in Alzheimer’s disease (AD) patients. To test this hypothesis, we have used the PCR primers utilized in the original report to amplify CO1 and CO2 sequences from two independent ρ° (mtDNA-less) cell lines. CO1 and CO2 sequences amplified from both of the ρ° cells, demonstrating that these sequences are also present in the human nuclear DNA. The nuclear pseudogene CO1 and CO2 sequences were then tested for each of the five “AD” missense mutations by restriction endonuclease site variant assays. All five mutations were found in the nuclear CO1 and CO2 PCR products from ρ° cells, but none were found in the PCR products obtained from cells with normal mtDNA. Moreover, when the overlapping nuclear CO1 and CO2 PCR products were cloned and sequenced, all five missense mutations were found, as well as a linked synonymous mutation. Unlike the findings in the original report, an additional 32 base substitutions were found, including two in adjacent tRNAs and a two base pair deletion in the CO2 gene. Phylogenetic analysis of the nuclear CO1 and CO2 sequences revealed that they diverged from modern human mtDNAs early in hominid evolution about 770,000 years before present. These data would be consistent with the interpretation that the missense mutations proposed to cause AD may be the product of ancient mtDNA variants preserved as nuclear pseudogenes.
Resumo:
Fish and mammal bones from the coastal site of Cerro Azul, Peru shed light on economic specialization just before the Inca conquest of A.D. 1470. The site devoted itself to procuring anchovies and sardines in quantity for shipment to agricultural communities. These small fish were dried, stored, and eventually transported inland via caravans of pack llamas. Cerro Azul itself did not raise llamas but obtained charqui (or dried meat) as well as occasional whole adult animals from the caravans. Guinea pigs were locally raised. Some 20 species of larger fish were caught by using nets; the more prestigious varieties of these show up mainly in residential compounds occupied by elite families.
Resumo:
The Deleted in AZoospermia (DAZ) genes encode potential RNA-binding proteins that are expressed exclusively in prenatal and postnatal germ cells and are strong candidates for human fertility factors. Here we report the identification of an additional member of the DAZ gene family, which we have called BOULE. With the identification of this gene, it is clear that the human DAZ gene family contains at least three members: DAZ, a Y-chromosome gene cluster that arose 30–40 million years ago and whose deletion is linked to infertility in men; DAZL, the “father” of DAZ, a gene that maps to human chromosome 3 and has homologs required for both female and male germ cell development in other organisms; and BOULE, a gene that we propose is the “grandfather” of DAZ and maps to human chromosome 2. Human and mouse BOULE resemble the invertebrate meiotic regulator Boule, the proposed ortholog of DAZ, in sequence and expression pattern and hence likely perform a similar meiotic function. In contrast, the previously identified human DAZ and DAZL are expressed much earlier than BOULE in prenatal germ stem cells and spermatogonia; DAZL also is expressed in female germ cells. These data suggest that homologs of the DAZ gene family can be grouped into two subfamilies (BOULE and DAZL) and that members of the DAZ family evolved from an ancestral meiotic regulator, Boule, to assume distinct, yet overlapping, functions in germ cell development.
Resumo:
Gonadotropin-releasing hormone (GnRH) is known and named for its essential role in vertebrate reproduction. Release of this decapeptide from neurons in the hypothalamus controls pituitary gonadotropin levels which, in turn, regulate gonadal state. The importance of GnRH is underscored by its widespread expression and conservation across vertebrate taxa: five amino acids are invariant in all nine known forms, whereas two others show only conservative changes. In most eutherian mammals, only one form, expressed in the hypothalamus, is thought to exist, although in a recent report, antibody staining in developing primates suggests an additional form. In contrast, multiple GnRH forms and expression loci have been reported in many non-mammalian vertebrates. However, evidence based on immunological discrimination does not always agree with analysis of gene expression, since GnRH forms encoded by different genes may not be reliably distinguished by antibodies. Here we report the expression of three distinct GnRH genes in a teleost fish brain, including the sequence encoding a novel GnRH preprohormone. Using in situ hybridization, we show that this form is found only in neurons that project to the pituitary and exhibit changes in soma size depending on social and reproductive state. The other two GnRH genes are expressed in other, distinct cell populations. All three genes share the motif of encoding a polypeptide consisting of GnRH and a GnRH-associated peptide. Whereas the GnRH moiety is highly conserved, the GnRH-associated peptides are not, reflecting differential selective pressure on different parts of the gene. GnRH forms expressed in nonhypothalamic regions may serve to coordinate reproductive activities of the animal.
Resumo:
We report characterization of a human T-cell lymphotropic virus type II (HTLV-II) isolated from an interleukin 2-dependent CD8 T-cell line derived from peripheral blood mononuclear cells of a healthy, HTLV-II-seropositive female Bakola Pygmy, aged 59, living in a remote equatorial forest area in south Cameroon. This HTLLV-II isolate, designated PYGCAM-1, reacted in an indirect immunofluorescence assay with HTLV-II and HTLV-I polyclonal antibodies and with an HTLV-I/II gp46 monoclonal antibody but not with HTLV-I gag p19 or p24 monoclonal antibodies. The cell line produced HTLV-I/II p24 core antigen and retroviral particles. The entire env gene (1462 bp) and most of the long terminal repeat (715 bp) of the PYGCAM-1 provirus were amplified by the polymerase chain reaction using HTLV-II-specific primers. Comparison with the long terminal repeat and envelope sequences of prototype HTLV-II strains indicated that PYGCAM-1 belongs to the subtype B group, as it has only 0.5-2% nucleotide divergence from HTLV-II B strains. The finding of antibodies to HTLV-II in sera taken from the father of the woman in 1984 and from three unrelated members of the same population strongly suggests that PYGCAM-1 is a genuine HTLV-II that has been present in this isolated population for a long time. The low genetic divergence of this African isolate from American isolates raises questions about the genetic variability over time and the origin and dissemination of HTLV-II, hitherto considered to be predominantly a New World virus.