12 resultados para Parasitic nematodes

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nematodes can alter their surface coat protein compositions at the molts between developmental stages or in response to environmental changes; such surface alterations may enable parasitic nematodes to evade host immune defenses during the course of infection. Surface antigen switching mechanisms are presently unknown. In a genetic study of surface antigen switching, we have used a monoclonal antibody, M37, that recognizes a surface antigen on the first larval stage of the free-living nematode Caenorhabditis elegans. We demonstrate that wild-type C. elegans can be induced to display the M37 antigen on a later larval stage by altering the growth conditions. Mutations that result in nonconditional display of this antigen on all four larval stages fall into two classes. One class defines the new gene srf-6 II. The other mutations are in previously identified dauer-constitutive genes involved in transducing environmental signals that modulate formation of the dauer larva, a developmentally arrested dispersal stage. Although surface antigen switching is affected by some of the genes that control dauer formation, these two process can be blocked separately by specific mutations or induced separately by environmental factors. Based on these results, the mechanisms of nematode surface antigen switching can now be investigated directly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evasion of host immunity by Toxocara canis infective larvae is mediated by the nematode surface coat, which is shed in response to binding by host antibody molecules or effector cells. The major constituent of the coat is the TES-120 glycoprotein series. We have isolated a 730-bp cDNA from the gene encoding the apoprotein precursor of TES-120. The mRNA is absent from T. canis adults but hyperabundant in larvae, making up approximately 10% of total mRNA, and is trans-spliced with the nematode 5' leader sequence SL1. It encodes a 15.8-kDa protein (after signal peptide removal) containing a typical mucin domain: 86 amino acid residues, 72.1% of which are Ser or Thr, organized into an array of heptameric repeats, interspersed with proline residues. At the C-terminal end of the putative protein are two 36-amino acid repeats containing six Cys residues, in a motif that can also be identified in several genes in Caenorhabditis elegans. Although TES-120 displays size and charge heterogeneity, there is a single copy gene and a homogeneous size of mRNA. The association of overexpression of some membrane-associated mucins with immunosuppression and tumor metastasis suggests a possible model for the role of the surface coat in immune evasion by parasitic nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified telomerase activity in extracts of three evolutionarily diverse kinetoplastid species: Trypanosoma brucei, Leishmania major, and Leishmania tarentolae. Telomerase activity was initially detected in extracts from insect form cells of all three kinetoplastid species by using a modification of the one-tube telomere repeat amplification protocol [Kim, N., et al. (1994) Science 266, 2011–2015], although better results were subsequently achieved with the two-tube telomere repeat amplification protocol [Autexier, C., Pruzan, R., Funk, W. & Greider, C. (1996) EMBO J. 15, 5928–5935]. The activity in T. brucei extracts was sufficiently robust to enable its detection in a direct assay of telomerase; enzyme processivity was found to be relatively low. The in vitro properties of telomerase suggest a possible templating domain sequence for the telomerase RNA of T. brucei. Telomerase activity is likely to contribute to telomere maintenance in these parasitic organisms and provides a new target for chemotherapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of most eukaryotes are composed of genes arranged on the chromosomes without regard to function, with each gene transcribed from a promoter at its 5′ end. However, the genome of the free-living nematode Caenorhabditis elegans contains numerous polycistronic clusters similar to bacterial operons in which the genes are transcribed sequentially from a single promoter at the 5′ end of the cluster. The resulting polycistronic pre-mRNAs are processed into monocistronic mRNAs by conventional 3′ end formation, cleavage, and polyadenylation, accompanied by trans-splicing with a specialized spliced leader (SL), SL2. To determine whether this mode of gene organization and expression, apparently unique among the animals, occurs in other species, we have investigated genes in a distantly related free-living rhabditid nematode in the genus Dolichorhabditis (strain CEW1). We have identified both SL1 and SL2 RNAs in this species. In addition, we have sequenced a Dolichorhabditis genomic region containing a gene cluster with all of the characteristics of the C. elegans operons. We show that the downstream gene is trans-spliced to SL2. We also present evidence that suggests that these two genes are also clustered in the C. elegans and Caenorhabditis briggsae genomes. Thus, it appears that the arrangement of genes in operons pre-dates the divergence of the genus Caenorhabditis from the other genera in the family Rhabditidae, and may be more widespread than is currently appreciated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the hypodermis of a rhabditid nematode such as Caenorhabditis elegans is a single syncytium. The size of this syncytium (as measured by body size) has evolved repeatedly in the rhabditid nematodes. Two cellular mechanisms are important in the evolution of body size: changes in the numbers of cells that fuse with the syncytium, and the extent of its acellular growth. Thus nematodes differ from mammals and other invertebrates in which body size evolution is caused by changes in cell number alone. The evolution of acellular syncytial growth in nematodes is also associated with changes in the ploidy of hypodermal nuclei. These nuclei are polyploid as a consequence of iterative rounds of endoreduplication, and this endocycle has evolved repeatedly. The association between acellular growth and endoreduplication is also seen in C. elegans mutations that interrupt transforming growth factor-β signaling and that result in dwarfism and deficiencies in hypodermal ploidy. The transforming growth factor-β pathway is a candidate for being involved in nematode body size evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brood parasitism as an alternative female breeding tactic is particularly common in ducks, where hosts often receive eggs laid by parasitic females of the same species and raise their offspring. Herein, we test several aspects of a kin selection explanation for this phenomenon in goldeneye ducks (Bucephala clangula) by using techniques of egg albumen sampling and statistical bandsharing analysis based on resampling. We find that host and primary parasite are indeed often related, with mean r = 0.13, about as high as between first cousins. Relatedness to the host is higher in nests where a parasite lays several eggs than in those where she lays only one. Returning young females parasitize their birth nestmates (social mothers or sisters, which are usually also their genetic mothers and sisters) more often than expected by chance. Such adult relatives are also observed together in the field more often than expected and for longer periods than other females. Relatedness and kin discrimination, which can be achieved by recognition of birth nestmates, therefore play a role in these tactics and probably influence their success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wolbachia are bacteria that live in the cells of various invertebrate species to which they cause a wide range of effects on physiology and reproduction. We investigated the effect of Wolbachia infection in the parasitic wasp, Asobara tabida Nees (Hymenoptera, Braconidae). In the 13 populations tested, all individuals proved to be infected by Wolbachia. The removal of Wolbachia by antibiotic treatment had a totally unexpected effect—aposymbiotic female wasps were completely incapable of producing mature oocytes and therefore could not reproduce. In contrast, oogenesis was not affected in treated Asobara citri, a closely related species that does not harbor Wolbachia. No difference between natural symbiotic and cured individuals was found for other adult traits including male fertility, locomotor activity, and size, indicating that the effect on oogenesis is highly specific. We argue that indirect effects of the treatments used in our study (antibiotic toxicity or production of toxic agents) are very unlikely to explain the sterility of females, and we present results showing a direct relationship between oocyte production and Wolbachia density in females. We conclude that Wolbachia is necessary for oogenesis in these A. tabida strains, and this association would seem to be the first example of a transition from facultative to obligatory symbiosis in arthropod–Wolbachia associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have found a predator-prey association between the social amoeba Dictyostelium discoideum and the free soil living nematode Caenorhabditis elegans. C. elegans feeds on the amoebae and multiplies indefinitely when amoebae are the sole food source. In an environment created from soil, D. discoideum grows and develops, but not in the presence of C. elegans. During development, C. elegans feeds on amoebae until they aggregate and synthesize an extracellular matrix called the slime sheath. After the sheath forms, the aggregate and slug are protected. Adult nematodes ingest Dictyostelium spores, which pass through the gut of the worm without loss of structure and remain viable. Nematodes kill the amoebae but disperse the spores. The sheath that is constructed when the social amoebae aggregate and the spore coats of the individual cells may protect against this predator. Individual amoebae may also protect themselves by secreting compounds that repel nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Males of Drosophila melanogaster lacking the Y chromosome-linked crystal locus show multiple meiotic alterations including chromosome disorganization and prominent crystal formation in primary spermatocytes. These alterations are due to the derepression of the X chromosome-linked Stellate sequences. To understand how the derepression of the Stellate elements gives rise to these abnormalities, we have expressed the protein encoded by the Stellate sequences in bacteria and produced an antibody against the fusion protein. Immunostaining of crystal- testes has clearly shown that the Stellate protein is a major component of the crystals. Moreover, in vitro experiments have shown that this protein can interact with the catalytic alpha subunit of casein kinase 2 enzyme, altering its activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasitic and predatory arthropods often prevent plants from being severely damaged by killing herbivores as they feed on the plants. Recent studies show that a variety of plants, when injured by herbivores, emit chemical signals that guide natural enemies to the herbivores. It is unlikely that herbivore-damaged plants initiate the production of chemicals solely to attract parasitoids and predators. The signaling role probably evolved secondarily from plant responses that produce toxins and deterrents against herbivores and antibiotics against pathogens. To effectively function as signals for natural enemies, the emitted volatiles should be clearly distinguishable from background odors, specific for prey or host species that feed on the plant, and emitted at times when the natural enemies forage. Our studies on the phenomena of herbivore-induced emissions of volatiles in corn and cotton plants and studies conducted by others indicate that (i) the clarity of the volatile signals is high, as they are unique for herbivore damage, produced in relatively large amounts, and easily distinguishable from background odors; (ii) specificity is limited when different herbivores feed on the same plant species but high as far as odors emitted by different plant species and genotypes are concerned; (iii) the signals are timed so that they are mainly released during the daytime, when natural enemies tend to forage, and they wane slowly after herbivory stops.