3 resultados para Parametric VaR (Value-at-Risk)
em National Center for Biotechnology Information - NCBI
Resumo:
Bipolar affective disorder (BPAD; manic-depressive illness) is characterized by episodes of mania and/or hypomania interspersed with periods of depression. Compelling evidence supports a significant genetic component in the susceptibility to develop BPAD. To date, however, linkage studies have attempted only to identify chromosomal loci that cause or increase the risk of developing BPAD. To determine whether there could be protective alleles that prevent or reduce the risk of developing BPAD, similar to what is observed in other genetic disorders, we used mental health wellness (absence of any psychiatric disorder) as the phenotype in our genome-wide linkage scan of several large multigeneration Old Order Amish pedigrees exhibiting an extremely high incidence of BPAD. We have found strong evidence for a locus on chromosome 4p at D4S2949 (maximum genehunter-plus nonparametric linkage score = 4.05, P = 5.22 × 10−4; sibpal Pempirical value <3 × 10−5) and suggestive evidence for a locus on chromosome 4q at D4S397 (maximum genehunter-plus nonparametric linkage score = 3.29, P = 2.57 × 10−3; sibpal Pempirical value <1 × 10−3) that are linked to mental health wellness. These findings are consistent with the hypothesis that certain alleles could prevent or modify the clinical manifestations of BPAD and perhaps other related affective disorders.
Resumo:
Human cancer cells with a mutated p53 tumor-suppressor gene have a selective growth advantage and may exhibit resistance to ionizing radiation and certain chemotherapeutic agents. To examine the prognostic value of mutations in the p53 gene, a cohort of 90 Midwestern Caucasian breast cancer patients were analyzed with methodology that detects virtually 100% of all mutations. The presence of a p53 gene mutation was by far the single most predictive indicator for recurrence and death (relative risks of 4.7 and 23.2, respectively). Direct detection of p53 mutations had substantially greater prognostic value than immunohistochemical detection of p53 overexpression. Analysis of p53 gene mutations may permit identification of a subset of breast cancer patients who, despite lack of conventional indicators of poor prognosis, are at high risk of early recurrence and death.