2 resultados para Parameters estimation
em National Center for Biotechnology Information - NCBI
Resumo:
The distribution of optimal local alignment scores of random sequences plays a vital role in evaluating the statistical significance of sequence alignments. These scores can be well described by an extreme-value distribution. The distribution’s parameters depend upon the scoring system employed and the random letter frequencies; in general they cannot be derived analytically, but must be estimated by curve fitting. For obtaining accurate parameter estimates, a form of the recently described ‘island’ method has several advantages. We describe this method in detail, and use it to investigate the functional dependence of these parameters on finite-length edge effects.
Resumo:
A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source–sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.