5 resultados para Paracrine Factors
em National Center for Biotechnology Information - NCBI
Resumo:
Early neurogenesis progresses by an initial massive proliferation of neuroepithelial cells followed by a sequential differentiation of the various mature neural cell types. The regulation of these processes by growth factors is poorly understood. We intend to understand, in a well-defined biological system, the embryonic chicken retina, the role of the insulin-related growth factors in neurogenesis. We demonstrate the local presence of signaling elements together with a biological response to the factors. Neuroretina at days 6-8 of embryonic development (E6-E8) expressed proinsulin/insulin and insulin-like growth factor I (IGF-I) mRNAs as well as insulin receptor and IGF type I receptor mRNAs. In parallel with this in vivo gene expression, E5 cultured neuroretinas synthesized and released to the medium a metabolically radiolabeled immunoprecipitable insulin-related peptide. Furthermore, insulin-related immunoreactive material with a HPLC mobility close to that of proinsulin was found in the E6-E8 vitreous humor. Exogenous chicken IGF-I, human insulin, and human proinsulin added to E6 cultured neuroretinas showed relatively close potencies stimulating proliferation, as determined by [methyl-3H]thymidine incorporation, with a plateau reached at 10(-8) M. These factors also stimulated neuronal differentiation, indicated by the expression of the neuron-specific antigen G4. Thus, insulin-related growth factors, interestingly including proinsulin, are present in the developing chicken retina and appear to play an autocrine/paracrine stimulatory role in the progression of neurogenesis.
Resumo:
The autocrine/paracrine peptide signaling molecules such as growth factors have many promising biologic activities for clinical applications. However, one cannot expect specific therapeutic effects of the factors administered by ordinary drug delivery systems as they have limited target specificity and short half-lives in vivo. To overcome the difficulties in using growth factors as therapeutic agents, we have produced fusion proteins consisting of growth factor moieties and a collagen-binding domain (CBD) derived from Clostridium histolyticum collagenase. The fusion proteins carrying the epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) at the N terminal of CBD (CBEGF/CBFGF) tightly bound to insoluble collagen and stimulated the growth of BALB/c 3T3 fibroblasts as much as the unfused counterparts. CBEGF, when injected subcutaneously into nude mice, remained at the sites of injection for up to 10 days, whereas EGF was not detectable 24 h after injection. Although CBEGF did not exert a growth-promoting effect in vivo, CBFGF, but not bFGF, strongly stimulated the DNA synthesis in stromal cells at 5 days and 7 days after injection. These results indicate that CBD may be used as an anchoring unit to produce fusion proteins nondiffusible and long-lasting in vivo.
Resumo:
Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca2+, which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the α-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.
Resumo:
The uterine expression of leukemia inhibitory factor (LIF) is essential for embryo implantation in the mouse. Here, we describe the expression of LIF, related members of this group of cytokines, oncostatin M and ciliary neurotrophic factor, and the LIF receptor beta and glycoprotein gp130 in normal human tissues and in the endometrium of fertile women. Our results show that LIF is the only one of these factors expressed at detectable levels in the endometrium of women of proven fertility. LIF expression is restricted to the endometrial glands during the secretory/postovulatory phase but is not present in the endometrium during the proliferative/preovulatory phase. The LIF receptor beta is expressed during the proliferative and secretory phases of the cycle and is restricted to the luminal epithelium. The associated signal-transducing component of the LIF receptor, gp130, is also expressed in both the luminal and glandular epithelium throughout the cycle. These results suggest that uterine expression of LIF in humans, like mice, may have a role in regulating embryo implantation, possibly through an autocrine/paracrine interaction between LIF and its receptor at the luminal epithelium.
Resumo:
During tumor progression, variants may arise that grow more vigorously. The fate of such variants depends upon the balance between aggressiveness of the variant and the strength of the host immunity. Although enhancing host immunity to cancer is a logical objective, eliminating host factors necessary for aggressive growth of the variant should also be considered. The present study illustrates this concept in the model of a spontaneously occurring, progressively growing variant of an ultraviolet light-induced tumor. The variant produces chemotactic factors that attract host leukocytes and is stimulated in vitro by defined growth factors that can be produced or induced by leukocytes. This study also shows that CD8+ T-cell immunity reduces the rate of tumor growth; however, the variant continues to grow and kills the host. Treatment with a monoclonal anti-granulocyte antibody that counteracts the infiltration of the tumor cell inoculum by non-T-cell leukocytes did not interfere with the CD8+ T-cell-mediated immune response but resulted in rejection of the tumor challenge, indicating a synergy between CD8+ T-cell-mediated immunity and the inhibition of paracrine stimulation.