4 resultados para Paracelsus, 1493-1541

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of interleukin 2 (IL-2) as an antineoplastic agent has been limited by the serious toxicities that accompany the doses necessary for a tumor response. Elevation of nitric oxide (NO) and tumor necrosis factor (TNF) both have been implicated in IL-2 toxicities. CNI-1493, a tetravalent guanylhydrazone, is an inhibitor of macrophage activation including the synthesis of TNF and other cytokines. Doses of CNI-1493 as low as 1 mg/kg/day conferred complete protection against fatal toxicity of IL-2 with IL-2 doses tenfold higher than the safely tolerated level in Sprague–Dawley rats. Moreover, typical pathologic changes in the lungs, kidneys, and the liver caused by IL-2 infusion were blocked by cotreatment with CNI-1493. When animals bearing established hepatomas were given IL-2 and CNI-1493 combination therapy, 10 of 10 hepatomas regressed from 1 cm3 to <1 mm3. Intracytoplasmic TNF levels were increased in normal tissues from IL-2 treated animals, and treatment with CNI-1493 maintained TNF at control levels. The degree of apoptosis measured by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling staining of tumors following IL-2 therapy was not reduced compared with IL-2 cotreated with CNI-1493. In contrast, apoptosis in the liver and lung parenchyma following IL-2 therapy was blocked completely by cotreatment with CNI-1493. Taken together, these data showed that low and infrequent doses of CNI-1493 markedly protected animals from IL-2 systemic toxicities whereas not affecting tumor response to IL-2 therapy. With the protection afforded by CNI-1493 treatment, IL-2 therapy dose levels could be increased to provide significant antitumor effects in animals with established hepatomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) mediates a wide variety of disease states including septic shock, acute and chronic inflammation, and cachexia. Recently, a multivalent guanylhydrazone (CNI-1493) developed as an inhibitor of macrophage activation was shown to suppress TNF production and protect against tissue inflammation and endotoxin lethality [Bianchi, M., Ulrich, P., Bloom, O., Meistrell, M., Zimmerman, G. A., Schmidtmayerova, H., Bukrinsky, M., Donnelley, T., Bucala, R., Sherry, B., Manogue, K. R., Tortolani, A. J., Cerami, A. & Tracey, K. J. (1995) Mol. Med. 1, 254-266, and Bianchi, M., Bloom, O., Raabe, T., Cohen, P. S., Chesney, J., Sherry, B., Schmidtmayerova, H., Zhang, X., Bukrinsky, M., Ulrich, P., Cerami, A. & Tracey, J. (1996) J. Exp. Med., in press]. We have now elucidated the mechanism by which CNI-1493 inhibits macrophage TNF synthesis and show here that it acts through suppression of TNF translation efficiency. CNI-1493 blocked neither the lipopolysaccharide (LPS)-induced increases in the expression of TNF mRNA nor the translocation of nuclear factor NF-kappa B to the nucleus in macrophages activated by 15 min of LPS stimulation, indicating that CNI-1493 does not interfere with early NF-kappa B-mediated transcriptional regulation of TNF. However, synthesis of the 26-kDa membrane form of TNF was effectively blocked by CNI-1493. Further evidence for the translational suppression of TNF is given by experiments using chloram-phenicol acetyltransferase (CAT) constructs containing elements of the TNF gene that are involved in TNF translational regulation. Both the 5' and 3' untranslated regions of the TNF gene were required to elicit maximal translational suppression by CNI-1493. Identification of the molecular target through which CNI-1493 inhibits TNF translation should provide insight into the regulation of macrophage activation and mechanisms of inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Panhandle PCR amplifies genomic DNA with known 5′ and unknown 3′ sequences from a template with an intrastrand loop schematically shaped like a pan with a handle. We used panhandle PCR to clone MLL genomic breakpoints in two pediatric treatment-related leukemias. The karyotype in a case of treatment-related acute lymphoblastic leukemia showed the t(4;11)(q21;q23). Panhandle PCR amplified the translocation breakpoint at position 2158 in intron 6 in the 5′ MLL breakpoint cluster region (bcr). The karyotype in a case of treatment-related acute myeloid leukemia was normal, but Southern blot analysis showed a single MLL gene rearrangement. Panhandle PCR amplified the breakpoint at position 1493 in MLL intron 6. Screening of somatic cell hybrid and radiation hybrid DNAs by PCR and reverse transcriptase-PCR analysis of the leukemic cells indicated that panhandle PCR identified a fusion of MLL intron 6 with a previously uncharacterized sequence in MLL intron 1, consistent with a partial duplication. In both cases, the breakpoints in the MLL bcr were in Alu repeats, and there were Alu repeats in proximity to the breakpoints in the partner DNAs, suggesting that Alu sequences were relevant to these rearrangements. This study shows that panhandle PCR is an effective method for cloning MLL genomic breakpoints in treatment-related leukemias. Analysis of additional pediatric cases will determine whether breakpoint distribution deviates from the predilection for 3′ distribution in the bcr that has been found in adult cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophages become activated by bacterial endotoxin (lipopolysaccharide) and other stimuli to release proinflammatory cytokines and NO. To prevent release of toxic or potentially lethal quantities of these factors, the state of macrophage activation is counter-regulated by anti-inflammatory mediators (e.g., glucocorticoid hormones, interleukin 10, and transforming growth factor type β). Fetuin, a negative acute-phase protein, recently was implicated as an anti-inflammatory mediator, because it is required for macrophage deactivation by spermine. In the present studies, we found that fetuin is necessary for macrophages to respond to CNI-1493, a tetravalent guanylhydrazone inhibitor of p38 mitogen-activated protein kinase phosphorylation. Fetuin dose-dependently increases macrophage uptake of CNI-1493, which can be specifically inhibited by anti-human fetuin antibodies. Anti-human fetuin antibodies render primary human peripheral blood mononuclear cells insensitive to deactivation by CNI-1493. Thus, macrophages use fetuin as an opsonin for cationic-deactivating molecules, both endogenous (e.g., spermine) and pharmacologic (e.g., CNI-1493). This role of fetuin as an opsonic participant in macrophage-deactivating mechanisms has implications for understanding and manipulating the innate immune response.