13 resultados para Pair 1
em National Center for Biotechnology Information - NCBI
Resumo:
This report presents evidence that a reduced pyrrolo[1,2-a]benzimidazole (PBI) cleaves DNA as a result of phosphate alkylation followed by hydrolysis of the resulting phosphate triester. The base-pair specificity of the phosphate alkylation results from Hoogsteen-type hydrogen bonding of the reduced PBI in the major groove at only A.T and G.C base pairs. Alkylated phosphates were detected by 31P NMR and the cleavage products were detected by 1H NMR and HPLC. Evidence is also presented that a reduced PBI interacts with DNA in the major groove rather than in the minor groove or by intercalation.
Resumo:
Synthesis of mouse metallothionein (MT)-I and MT-II is transcriptionally induced by the synthetic glucocorticoid, dexamethasone (DEX) or both in vivo as well as in numerous cell lines. However, the location(s) of a glucocorticoid response element (GRE) has not been described. The observation that a marked MT-I gene, as well as heterologous genes, when placed in the context of 17 kb of flanking sequence from the MT locus, are inducible by DEX and lipopolysaccharide in transgenic mice renewed the search for the GRE. Analysis of a series of deletion constructs from this 17-kb region in cultured cells identified a single 455-bp region that conferred DEX induction on a reporter gene. This 455-bp region contains two GREs that bind to the glucocorticoid receptor as assessed by gel mobility shift. Deletion of this fragment from the 17-kb flanking region eliminates the DEX responsiveness of reporter genes. The two GREs, which are located ≈1 kb upstream of the MT-II gene and ≈7 kb upstream of the MT-I gene, are necessary for induction of both genes and can function independently of elements within the proximal promoter region of either gene.
Resumo:
Activation of gene transcription in eukaryotes requires the cooperative assembly of an initiation complex containing many protein subunits. The necessity that these components contact each other and the promoter/enhancer in defined ways suggests that their spatial arrangement might influence the activation response. Indeed, growing evidence indicates that DNA architecture can profoundly affect transcriptional potency. Much less is known about the influence of protein architecture on transcriptional activation. Here, we examine the architectural dependence of activator function through the analysis of matched pairs of AP-1•DNA complexes differing only in their orientation. Mutation of a critical Arg residue in the basic-leucine zipper domain of either Fos or Jun yielded single point-mutant heterodimers that bind DNA in a single defined orientation, as determined directly by native chemical ligation/affinity cleavage; by contrast, the corresponding wild-type protein binds DNA as a roughly equal mixture of two isomeric orientations, which are related by subunit interchange. The stereochemistry of the point-mutant heterodimers could be switched by inversion of a C•G base pair in the center of the AP-1 site, thus providing access to both fixed orientational isomers. Yeast reporter gene assays consistently revealed that one orientational isomer activates transcription at least 10-fold more strongly than the other. These results suggest that protein architecture, especially the spatial relationship of the activation domain to the promoter, can exert a powerful influence on activator potency.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune multisystem inflammatory disease characterized by the production of pathogenic autoantibodies. Previous genetic studies have suggested associations with HLA Class II alleles, complement gene deficiencies, and Fc receptor polymorphisms; however, it is likely that other genes contribute to SLE susceptibility and pathogenesis. Here, we report the results of a genome-wide microsatellite marker screen in 105 SLE sib-pair families. By using multipoint nonparametric methods, the strongest evidence for linkage was found near the HLA locus (6p11-p21) [D6S257, logarithm of odds (lod) = 3.90, P = 0.000011] and at three additional regions: 16q13 (D16S415, lod = 3.64, P = 0.000022), 14q21–23 (D14S276, lod = 2.81, P = 0.00016), and 20p12 (D20S186, lod = 2.62, P = 0.00025). Another nine regions (1p36, 1p13, 1q42, 2p15, 2q21–33, 3cent-q11, 4q28, 11p15, and 15q26) were identified with lod scores ≥1.00. These data support the hypothesis that multiple genes, including one in the HLA region, influence susceptibility to human SLE.
Resumo:
The crystal and molecular structure of an RNA duplex corresponding to the high affinity Rev protein binding element (RBE) has been determined at 2.1-Å resolution. Four unique duplexes are present in the crystal, comprising two structural variants. In each duplex, the RNA double helix consists of an annealed 12-mer and 14-mer that form an asymmetric internal loop consisting of G-G and G-A noncanonical base pairs and a flipped-out uridine. The 12-mer strand has an A-form conformation, whereas the 14-mer strand is distorted to accommodate the bulges and noncanonical base pairing. In contrast to the NMR model of the unbound RBE, an asymmetric G-G pair with N2-N7 and N1-O6 hydrogen bonding, is formed in each helix. The G-A base pairing agrees with the NMR structure in one structural variant, but forms a novel water-mediated pair in the other. A backbone flip and reorientation of the G-G base pair is required to assume the RBE conformation present in the NMR model of the complex between the RBE and the Rev peptide.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
Polyamides composed of four amino acids, imidazole (Im), pyrrole (Py), hydroxypyrrole (Hp), and β-alanine (β), are synthetic ligands that form highly stable complexes in the minor groove of DNA. Although specific pairing rules within the 2:1 motif can be used to distinguish the four Watson⋅Crick base pairs, a comparable recognition code for 1:1 polyamide:DNA complexes had not been described. To set a quantitative baseline for the field, the sequence specificities of Im, Py, Hp, and β for the four Watson⋅Crick base pairs were determined for two polyamides, Im-β-ImPy-β-Im-β-ImPy-β-Dp (1, for Im, Py, and β) and Im-β-ImHp-β-Im-β-ImPy-β-Dp (2, for Hp), in a 1:1 complex within the DNA sequence context 5′-AAAGAGAAGAG-3′. Im residues do not distinguish G,C from A,T but bind all four base pairs with high affinity. Py and β residues exhibit ≥10-fold preference for A,T over G,C base pairs. The Hp residue displays a unique preference for a single A⋅T base pair with an energetic penalty.
Resumo:
The carcinogenic heterocyclic amine (HA) 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is formed during the cooking of various meats. To enable structure/activity studies aimed at understanding how DNA damaged by a member of the HA class of compounds can ultimately lead to cancer, we have determined the first solution structure of an 11-mer duplex containing the C8-dG adduct formed by reaction with N-acetoxy-PhIP. A slow conformational exchange is observed in which the PhIP ligand either intercalates into the DNA helix by denaturing and displacing the modified base pair (main form) or is located outside the helix in a minimally perturbed B-DNA duplex (minor form). In the main base-displaced intercalation structure, the minor groove is widened, and the major groove is compressed at the lesion site because of the location of the bulky PhIP-N-methyl and phenyl ring in the minor groove; this distortion causes significant bending of the helix. The PhIP phenyl ring interacts with the phosphodiester-sugar ring backbone of the complementary strand and its fast rotation with respect to the intercalated imidazopyridine ring causes substantial distortions at this site, such as unwinding and bulging-out of the strand. The glycosidic torsion angle of the [PhIP]dG residue is syn, and the displaced guanine base is directed toward the 3′ end of the modified strand. This study contributes, to our knowledge, the first structural information on the biologically relevant HA class to a growing body of knowledge about how conformational similarities and differences for a variety of types of lesions can influence protein interactions and ultimately biological outcome.
Resumo:
Phylogenetic analyses are increasingly used in attempts to clarify transmission patterns of human immunodeficiency virus type 1 (HIV-1), but there is a continuing discussion about their validity because convergent evolution and transmission of minor HIV variants may obscure epidemiological patterns. Here we have studied a unique HIV-1 transmission cluster consisting of nine infected individuals, for whom the time and direction of each virus transmission was exactly known. Most of the transmissions occurred between 1981 and 1983, and a total of 13 blood samples were obtained approximately 2-12 years later. The p17 gag and env V3 regions of the HIV-1 genome were directly sequenced from uncultured lymphocytes. A true phylogenetic tree was constructed based on the knowledge about when the transmissions had occurred and when the samples were obtained. This complex, known HIV-1 transmission history was compared with reconstructed molecular trees, which were calculated from the DNA sequences by several commonly used phylogenetic inference methods [Fitch-Margoliash, neighbor-joining, minimum-evolution, maximum-likelihood, maximum-parsimony, unweighted pair group method using arithmetic averages (UPGMA), and a Fitch-Margoliash method assuming a molecular clock (KITSCH)]. A majority of the reconstructed trees were good estimates of the true phylogeny; 12 of 13 taxa were correctly positioned in the most accurate trees. The choice of gene fragment was found to be more important than the choice of phylogenetic method and substitution model. However, methods that are sensitive to unequal rates of change performed more poorly (such as UPGMA and KITSCH, which assume a constant molecular clock). The rapidly evolving V3 fragment gave better reconstructions than p17, but a combined data set of both p17 and V3 performed best. The accuracy of the phylogenetic methods justifies their use in HIV-1 research and argues against convergent evolution and selective transmission of certain virus variants.
Resumo:
The hippocampus and septum play central roles in one of the most important spheres of brain function: learning and memory. Although their topographic connections have been known for two decades and topography may be critical for cognitive functions, the basis for hippocamposeptal topographic projection is unknown. We now report for the first time that Elf-1, a membrane-bound eph family ligand, is a candidate molecular tag for the genesis of the hippocamposeptal topographic projection. Elf-1 is expressed in an increasing gradient from dorsal to ventral septum. Furthermore, Elf-1 selectively allows growth of neurites from topographically appropriate lateral hippocampal neurons, while inhibiting neurite outgrowth by medial hippocampal neurons. Complementary to the expression of Elf-1, an eph family receptor, Bsk, is expressed in the hippocampus in a lateral to medial gradient, consistent with a function as a receptor for Elf-1. Further, Elf-1 specifically bound Bsk, eliciting tyrosine kinase activity. We conclude that the Elf-1/Bsk ligand-receptor pair exhibits traits of a chemoaffinity system for the organization of hippocamposeptal topographic projections.
Resumo:
Whole genome linkage analysis of type 1 diabetes using affected sib pair families and semi-automated genotyping and data capture procedures has shown how type 1 diabetes is inherited. A major proportion of clustering of the disease in families can be accounted for by sharing of alleles at susceptibility loci in the major histocompatibility complex on chromosome 6 (IDDM1) and at a minimum of 11 other loci on nine chromosomes. Primary etiological components of IDDM1, the HLA-DQB1 and -DRB1 class II immune response genes, and of IDDM2, the minisatellite repeat sequence in the 5' regulatory region of the insulin gene on chromosome 11p15, have been identified. Identification of the other loci will involve linkage disequilibrium mapping and sequencing of candidate genes in regions of linkage.
Resumo:
Glucocorticoid levels in animals may respond to and influence the development of social attachments. This hypothesis was tested in prairie voles (Microtus ochrogaster), monogamous rodents that form long-term heterosexual pair bonds. In socially naive female prairie voles, cohabitation with an unfamiliar male resulted in a dramatic decline in serum corticosterone levels. When corticosterone levels were reduced via adrenalectomy, females developed partner preferences after 1 h of cohabitation, while sham-operated and untreated females required 3 h or more of nonsexual cohabitation to establish a partner preference. In adrenalectomized and intact females, exogenous injections of corticosterone, given prior to social exposure, prevented the development of preferences for the cohabitating male. Although corticosterone inhibited the development of partner preferences, it did not interfere with the expression of previously established social preferences. These results suggest that social stimuli can modulate adrenal activity and that adrenal activity, in turn, is capable of influencing the formation of adult social preferences in female prairie voles. The involvement of the adrenal axis in the formation of partner preferences and the subsequent development of pair bonds provides a mechanism through which environmental and social factors may influence social organization in this species.
Resumo:
Elucidating the relevant genomic changes mediating development and evolution of prostate cancer is paramount for effective diagnosis and therapy. A putative dominant-acting nude mouse prostatic carcinoma tumor-inducing gene, PTI-1, has been cloned that is expressed in patient-derived human prostatic carcinomas but not in benign prostatic hypertrophy or normal prostate tissue. PTI-1 was detected by cotransfecting human prostate carcinoma DNA into CREF-Trans 6 cells, inducing tumors in nude mice, and isolating genes displaying increased expression in tumor-derived cells by using differential RNA display (DD). Screening a human prostatic carcinoma (LNCaP) cDNA library with a 214-bp DNA fragment found by DD permitted the cloning of a full-length 2.0-kb PTI-1 cDNA. Sequence analysis indicates that PTI-1 is a gene containing a 630-bp 5' sequence and a 3' sequence homologous to a truncated and mutated form of human elongation factor 1 alpha. In vitro translation demonstrates that the PTI-1 cDNA encodes a predominant approximately 46-kDa protein. Probing Northern blots with a DNA fragment corresponding to the 5' region of PTI-1 identifies multiple PTI-1 transcripts in RNAs from human carcinoma cell lines derived from the prostate, lung, breast, and colon. In contrast, PTI-1 RNA is not detected in human melanoma, neuroblastoma, osteosarcoma, normal cerebellum, or glioblastoma multiforme cell lines. By using a pair of primers recognizing a 280-bp region within the 630-bp 5' PTI-1 sequence, reverse transcription-PCR detects PTI-1 expression in patient-derived prostate carcinomas but not in normal prostate or benign hypertrophic prostate tissue. In contrast, reverse transcription-PCR detects prostate-specific antigen expression in all of the prostate tissues. These results indicate that PTI-1 may be a member of a class of oncogenes that could affect protein translation and contribute to carcinoma development in human prostate and other tissues. The approaches used, rapid expression cloning with the CREF-Trans 6 system and the DD strategy, should prove widely applicable for identifying and cloning additional human oncogenes.