6 resultados para Paintiing, Modern

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of modern humans in the Late Pleistocene, whatever its phylogenetic history, was characterized by a series of behaviorally important shifts reflected in aspects of human hard tissue biology and the archeological record. To elucidate these shifts further, diaphyseal cross-sectional morphology was analyzed by using cross-sectional areas and second moments of area of the mid-distal humerus and midshaft femur. The humeral diaphysis indicates a gradual reduction in habitual load levels from Eurasian late archaic, to Early Upper Paleolithic early modern, to Middle Upper Paleolithic early modern hominids, with the Levantine Middle Paleolithic early modern humans being a gracile anomalous outlier. The femoral diaphysis, once variation in ecogeographically patterned body proportions is taken into account, indicates no changes across the pre-30,000 years B.P. samples in habitual locomotor load levels, followed by a modest decrease through the Middle Upper Paleolithic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two groups of humans are found in the Near East ≈100,000 years ago, the late archaic Neanderthals and the early modern Skhul/Qafzeh humans. Observations that Neanderthals were more heavily muscled, had stronger upper-limb bones, and possessed unusual shapes and orientations of some upper-limb joint complexes relative to the Skhul/Qafzeh hominids, have led some researchers to conclude that significant between-group upper-limb-related behavioral differences must have been present, despite the association of the two groups with similar Middle Paleolithic archeological complexes. A three-dimensional morphometric analysis of the hand remains of the Skhul/Qafzeh hominids, Neanderthals, early and late Upper Paleolithic humans, and Holocene humans supports the dichotomy. The Skhul/Qafzeh carpometacarpal remains do not have any unique morphologies relative to the other fossil samples remains examined. However, in the functionally significant metacarpal 1 and 3 bases they resemble Upper Paleolithic humans, not Neanderthals. Furthermore, the Skhul/Qafzeh sample differs significantly from the Neanderthals in many other aspects of hand functional anatomy. Given the correlations between changes in tool technologies and functional adaptations seen in the hands of Upper Paleolithic humans, it is concluded that the Skhul/Qafzeh hand remains were adapted to Upper Paleolithic-like manipulative repertoires. These results support the inference of significant behavioral differences between Neanderthals and the Skhul/Qafzeh hominids and indicate that a significant shift in human manipulative behaviors was associated with the earliest stages of the emergence of modern humans.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a new genetic distance for microsatellite loci, incorporating features of the stepwise mutation model, and test its performance on microsatellite polymorphisms in humans, chimpanzees, and gorillas. We find that it performs well in determining the relations among the primates, but less well than other distance measures (not based on the stepwise mutation model) in determining the relations among closely related human populations. However, the deepest split in the human phylogeny seems to be accurately reconstructed by the new distance and separates African and non-African populations. The new distance is independent of population size and therefore allows direct estimation of divergence times if the mutation rate is known. Based on 30 microsatellite polymorphisms and a recently reported average mutation rate of 5.6 x 10(-4) at 15 dinucleotide microsatellites, we estimate that the deepest split in the human phylogeny occurred about 156,000 years ago. Unlike most previous estimates, ours requires no external calibration of the rate of molecular evolution. We can use such calibrations, however, to test our estimate.