5 resultados para Paavilainen, Marko

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most genetic regulatory mechanisms involve protein–DNA interactions. In these processes, the classical Watson–Crick DNA structure sometimes is distorted severely, which in turn enables the precise recognition of the specific sites by the protein. Despite its key importance, very little is known about such deformation processes. To address this general question, we have studied a model system, namely, RecA binding to double-stranded DNA. Results from micromanipulation experiments indicate that RecA binds strongly to stretched DNA; based on this observation, we propose that spontaneous thermal stretching fluctuations may play a role in the binding of RecA to DNA. This has fundamental implications for the protein–DNA binding mechanism, which must therefore rely in part on a combination of flexibility and thermal fluctuations of the DNA structure. We also show that this mechanism is sequence sensitive. Theoretical simulations support this interpretation of our experimental results, and it is argued that this is of broad relevance to DNA–protein interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers tied together by constraints exhibit an internal pressure; this idea is used to analyze physical properties of the bottle-brush–like chromosomes of meiotic prophase that consist of polymer-like flexible chromatin loops, attached to a central axis. Using a minimal number of experimental parameters, semiquantitative predictions are made for the bending rigidity, radius, and axial tension of such brushes, and the repulsion acting between brushes whose bristles are forced to overlap. The retraction of lampbrush loops when the nascent transcripts are stripped away, the oval shape of diplotene bivalents between chiasmata, and the rigidity of pachytene chromosomes are all manifestations of chromatin pressure. This two-phase (chromatin plus buffer) picture that suffices for meiotic chromosomes has to be supplemented by a third constituent, a chromatin glue to understand mitotic chromosomes, and explain how condensation can drive the resolution of entanglements. This process resembles a thermal annealing in that a parameter (the affinity of the glue for chromatin and/or the affinity of the chromatin for buffer) has to be tuned to achieve optimal results. Mechanical measurements to characterize this protein–chromatin matrix are proposed. Finally, the propensity for even slightly chemically dissimilar polymers to phase separate (cluster like with like) can explain the apparent segregation of the chromatin into A+T- and G+C-rich regions revealed by chromosome banding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theory of the unzipping of double-stranded DNA is presented and is compared to recent micromanipulation experiments. It is shown that the interactions that stabilize the double helix and the elastic rigidity of single strands simply determine the sequence-dependent ≈12-pN force threshold for DNA strand separation. Using a semimicroscopic model of the binding between nucleotide strands, we show that the greater rigidity of the strands when formed into double-stranded DNA, relative to that of isolated strands, gives rise to a potential barrier to unzipping. The effects of this barrier are derived analytically. The force to keep the extremities of the molecule at a fixed distance, the kinetic rates for strand unpairing at fixed applied force, and the rupture force as a function of loading rate are calculated. The dependence of the kinetics and of the rupture force on molecule length is also analyzed.