9 resultados para PSA-NCAM

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural cell adhesion molecule (NCAM) is a membrane-associated member of the immunoglobulin superfamily capable of both homophilic and heterophilic binding. To investigate the significance of this binding, a gene targeting strategy in embryonic stem (ES) cells was used to replace the membrane-associated forms of NCAM with a soluble, secreted form of its extracellular domain. Although the heterozygous mutant ES cells were able to generate low coat color chimeric mice, only the wild-type allele was transmitted, suggesting the possibility of dominant lethality. Analysis of chimeric embryos with high level of ES cell contribution revealed severe growth retardation and morphological defects by E8.5-E9.5. The second allele was also targeted, and embryos derived almost entirely from the homozygous mutant ES cells exhibited the same lethal phenotype as observed with heterozygous chimeras. Together, these results indicate that dominant lethality associated with the secreted NCAM does not require the presence of membrane-associated NCAM. Furthermore, the data indicate that potent bioactive cues or signals can be generated by NCAM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the role of intercellular interaction on cell differentiation and gene expression in human prostate, we separated the two major epithelial cell populations and studied them in isolation and in combination with stromal cells. The epithelial cells were separated by flow cytometry using antibodies against differentially expressed cell-surface markers CD44 and CD57. Basal epithelial cells express CD44, and luminal epithelial cells express CD57. The CD57+ luminal cells are the terminally differentiated secretory cells of the gland that synthesize prostate-specific antigen (PSA). Expression of PSA is regulated by androgen, and PSA mRNA is one of the abundant messages in these cells. We show that PSA expression by the CD57+ cells is abolished after prostate tissue is dispersed by collagenase into single cells. Expression is restored when CD57+ cells are reconstituted with stromal cells. The CD44+ basal cells possess characteristics of stem cells and are the candidate progenitors of luminal cells. Differentiation, as reflected by PSA production, can be detected when CD44+ cells are cocultured with stromal cells. Our studies show that cell–cell interaction plays an important role in prostatic cytodifferentiation and the maintenance of the differentiated state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unc-52 gene encodes the nematode homologue of mammalian perlecan, the major heparan sulfate proteoglycan of the extracellular matrix. This is a large complex protein with regions similar to low-density lipoprotein receptors, laminin, and neural cell adhesion molecules (NCAMs). In this study, we extend our earlier work and demonstrate that a number of complex isoforms of this protein are expressed through alternative splicing. We identified three major classes of perlecan isoforms: a short form lacking the NCAM region and the C-terminal agrin-like region; a medium form containing the NCAM region, but still lacking the agrin-like region; and a newly identified long form that contains all five domains present in mammalian perlecan.  Using region-specific antibodies and unc-52 mutants, we reveal a complex spatial and temporal expression pattern for these UNC-52 isoforms. As well, using a series of mutations affecting different regions and thus different isoforms of UNC-52, we demonstrate that the medium NCAM-containing isoforms are sufficient for myofilament lattice assembly in developing nematode body-wall muscle. Neither short isoforms nor isoforms containing the C-terminal agrin-like region are essential for sarcomere assembly or muscle cell attachment, and their role in development remains unclear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells in the brains of adult mammals continue to proliferate in the subventricular zone (SVZ) throughout the lateral wall of the lateral ventricle. Here we show, using whole mount dissections of this wall from adult mice, that the SVZ is organized as an extensive network of chains of neuronal precursors. These chains are immunopositive to the polysialylated form of NCAM, a molecule present at sites of plasticity, and TuJ1, an early neuronal marker. The majority of the chains are oriented along the rostrocaudal axis and many join the rostral migratory stream that terminates in the olfactory bulb. Using focal microinjections of DiI and transplantation of SVZ cells carrying a neuron-specific reporter gene, we demonstrate that cells originating at different rostrocaudal levels of the SVZ migrate rostrally and reach the olfactory bulb where they differentiate into neurons. Our results reveal an extensive network of pathways for the tangential chain migration of neuronal precursors throughout the lateral wall of the lateral ventricle in the adult mammalian brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although transforming growth factor-β (TGF-β) has been identified to mainly inhibit cell growth, the correlation of elevated TGF-β with increasing serum prostate-specific antigen (PSA) levels in metastatic stages of prostate cancer has also been well documented. The molecular mechanism for these two contrasting effects of TGF-β, however, remains unclear. Here we report that Smad3, a downstream mediator of the TGF-β signaling pathway, functions as a coregulator to enhance androgen receptor (AR)-mediated transactivation. Compared with the wild-type AR, Smad3 acts as a strong coregulator in the presence of 1 nM 5α-dihydrotestosterone, 10 nM 17β-estradiol, or 1 μM hydroxyflutamide for the LNCaP mutant AR (mtAR T877A), found in many prostate tumor patients. We further showed that endogenous PSA expression in LNCaP cells can be induced by 5α-dihydrotestosterone, and the addition of the Smad3 further induces PSA expression. Together, our findings establish Smad3 as an important coregulator for the androgen-signaling pathway and provide a possible explanation for the positive role of TGF-β in androgen-promoted prostate cancer growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Homopolymers of alpha 2,8-linked N-acetylneuraminic acid [poly(alpha 2,8-Neu5Ac)] of the neural cell adhesion molecule NCAM have been shown to be temporally expressed during lung development and represent a marker for small cell lung carcinoma. We report the presence of a further polysialic acid in lung that consists of oligo/polymers of alpha 2,8-linked deaminoneuraminic acid residues [poly (alpha 2,8-KDN)], as detected with a monoclonal antibody in conjunction with a specific sialidase. Although the various cell types forming the bronchi, alveolar septs, and blood vessels were positive for poly (alpha 2,8-KDN) by immunohistochemistry, this polysialic acid was found on a single 150-kDa glycoprotein by immunoblot analysis. The poly(alpha 2,8-KDN)-bearing glycoprotein was not related to an NCAM protein based on immunochemical criteria. The expression of the poly (alpha 2,8-KDN) was developmentally regulated as evidenced by its gradual disappearance in the rat lung parenchyma commencing 1 week after birth. In adult lung the blood vessel endothelia and the smooth muscle fibers of both blood vessels and bronchi were positive but not the bronchial and alveolar epithelium. The poly (alpha 2,8-KDN)-bearing 150-kDa glycoprotein became reexpressed in various histological types of lung carcinomas and cell lines derived from them and represents a new oncodevelopmental antigen in lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasciclin II (Fas II), an NCAM-like cell adhesion molecule in Drosophila, is expressed on a subset of embryonic axons and controls selective axon fasiculation. Fas II is also expressed in imaginal discs. Here we use genetic analysis to show that Fas II is required for the control of proneural gene expression. Clusters of cells in the eye-antennal imaginal disc express the achaete proneural gene and give rise to mechanosensory neurons; other clusters of cells express the atonal gene and give rise to ocellar photoreceptor neurons. In fasII loss-of-function mutants, the expression of both proneural genes is absent in certain locations, and, as a result, the corresponding sensory precursors fail to develop. In fasII gain-of-function conditions, extra sensory structures arise from this same region of the imaginal disc. Mutations in the Abelson tyrosine kinase gene show dominant interactions with fasII mutations, suggesting that Abl and Fas II function in a signaling pathway that controls proneural gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a paracrine signaling assay capable of mimicking inductive events in the early vertebrate embryo. RNA encoding one or more secreted proteins is microinjected into a Xenopus laevis oocyte. After a brief incubation to allow translation, a piece of embryonic tissue competent to respond to the signaling protein is grafted onto the oocyte. The secreted protein's effect on the grafted explant is then scored by assaying expression of tissue-specific markers. Explants of ectodermal tissue from blastula or gastrula stage embryos were grafted onto oocytes that had been injected with RNA encoding activin or noggin. We found that the paracrine assay faithfully reconstitutes mesoderm induction by activin and neural induction by noggin. Blastula-stage explants grafted onto activin-expressing oocytes expressed the mesodermal marker genes brachyury, goosecoid, and muscle actin. Gastrula-stage explants grafted onto noggin-expressing oocytes expressed neural cell adhesion molecule (NCAM) and formed cement gland. By injecting pools of RNA synthesized from a cDNA expression library into the oocyte, we also used the assay to screen for secreted neural-inducing proteins. We assayed 20,000 independent transformants of a library constructed from LiCl-dorsalized Xenopus laevis embryos, and we identified two cDNAs that induced neural tissue in ectodermal explants from gastrula-stage embryos. Both cDNAs encode noggin. These results suggest that the paracrine assay will be useful for the cloning of novel signaling proteins as well as for the analysis of known factors.