54 resultados para PRIMARY STRUCTURE
em National Center for Biotechnology Information - NCBI
Resumo:
Two human cDNAs that encode novel vitamin K-dependent proteins have been cloned and sequenced. The predicted amino acid sequences suggest that both are single-pass transmembrane proteins with amino-terminal γ-carboxyglutamic acid-containing domains preceded by the typical propeptide sequences required for posttranslational γ-carboxylation of glutamic acid residues. The polypeptides, with deduced molecular masses of 23 and 17 kDa, are proline-rich within their putative cytoplasmic domains and contain several copies of the sequences PPXY and PXXP, motifs found in a variety of signaling and cytoskeletal proteins. Accordingly, these two proteins have been called proline-rich Gla proteins (PRGP1 and PRGP2). Unlike the γ-carboxyglutamic acid domain-containing proteins of the blood coagulation cascade, the two PRGPs are expressed in a variety of extrahepatic tissues, with PRGP1 and PRGP2 most abundantly expressed in the spinal cord and thyroid, respectively, among those tissues tested. Thus, these observations suggest a novel physiological role for these two new members of the vitamin K-dependent family of proteins.
Resumo:
The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligand to a G protein-coupled receptor sequentially related to the opioid receptors. We have cloned both the human and rat cDNAs encoding the OFQ precursor proteins, to investigate whether the sequence relationships existing between the opioid and OFQ systems are also found at the polypeptide precursor level, in particular whether the OFQ precursor would encode several bioactive peptides as do the opioid precursors, and to study the regional distribution of OFQ sites of synthesis. The entire precursor protein displays structural homology to the opioid peptide precursors, especially preprodynorphin and preproenkephalin. The predicted amino acid sequence of the OFQ precursor contains a putative signal peptide and one copy of the OFQ sequence flanked by pairs of basic amino acid residues. Carboxyl-terminal to the OFQ sequence, the human and rat precursors contain a stretch of 28 amino acids that is 100% conserved and thus may encode novel bioactive peptides. Two peptides derived from this stretch were synthesized but were found to be unable to activate the OFQ receptor, suggesting that if they are produced in vivo, these peptides would likely recognize receptors different from the OFQ receptor. To begin analyzing the sites of OFQ mRNA synthesis, Northern analysis of human and rat tissues were carried out and showed that the OFQ precursor mRNA is mainly expressed in the brain. In situ hybridization of rat brain slices demonstrated a regional distribution pattern of the OFQ precursor mRNA, which is distinct from that of the opioid peptide precursors. These data confirm that the OFQ system differs from the opioid system at the molecular level, although the OFQ and opioid precursors may have arisen from a common ancestral gene.
Resumo:
A 69-kDa proteinase (P69), a member of the pathogenesis-related proteins, is induced and accumulates in tomato (Lycopersicon esculentum) plants as a consequence of pathogen attack. We have used the polymerase chain reaction to identify and clone a cDNA from tomato plants that represent the pathogenesis-related P69 proteinase. The nucleotide sequence analysis revealed that P69 is synthesized in a preproenzyme form, a 745-amino acid polypeptide with a 22-amino acid signal peptide, a 92-amino acid propolypeptide, and a 631-amino acid mature polypeptide. Within the mature region the most salient feature was the presence of domains homologous to the subtilisin serine protease family. The amino acid sequences surrounding Asp-146, His-203, and Ser-532 of P69 are closely related to the catalytic sites (catalytic triad) of the subtilisin-like proteases. Northern blot analysis revealed that the 2.4-kb P69 mRNA accumulates abundantly in leaves and stem tissues from viroid-infected plants, whereas the mRNA levels in tissues from healthy plants were undetectable. Our results indicate that P69, a secreted calcium-activated endopeptidase, is a plant pathogenesis-related subtilisin-like proteinase that may collaborate with other defensive proteins in a general mechanism of active defense against attacking pathogens.
Resumo:
Cyclic nucleotides modulate potassium (K) channel activity in many cells and are thought to act indirectly by inducing channel protein phosphorylation. Herein we report the isolation from rabbit of a gene encoding a K channel (Kcn1) that is specifically activated by cGMP and not by cAMP. Analysis of the deduced amino acid sequence (725 amino acids) indicates that, in addition to a core region that is highly homologous to Shaker K channels, Kcn1 also contains a cysteine-rich region similar to that of ligand-gated ion channels and a cyclic nucleotide-binding region. Northern blot analysis detects gene expression in kidney, aorta, and brain. Kcn1 represents a class of K channels that may be specifically regulated by cGMP and could play an important role in mediating the effects of substances, such as nitric oxide, that increase intracellular cGMP.
Resumo:
Members of the winged helix/forkhead family of transcription factors are believed to play a role in cell-specific gene expression. A cDNA encoding a member of this family of proteins, termed hepatocyte nuclear factor/forkhead homologue 4 (HFH-4), has been isolated from rat lung and rat testis cDNA libraries. This cDNA contains an open reading frame of 421 amino acids with a conserved DNA binding domain and several potential transactivating regions. During murine lung development, a single species of HFH-4-specific transcript (2.4 kb long) is first detected precisely at the start of the late pseudoglandular stage (embryonic day 14.5) and, by in situ hybridization, is specifically localized to the proximal pulmonary epithelium. The unique temporal and spatial pattern of HFH-4 gene expression in the developing lung defines this protein as a marker for the initiation of bronchial epithelial cell differentiation and suggests that it may play an important role in cell fate determination during lung development. In addition to expression in the pulmonary epithelium, RNA blot analysis reveals 2.4-kb HFH-4 transcripts in the testis and oviduct. By using mice with genetic defects in spermatogenesis, HFH-4 expression in the testis is found to be associated with the appearance of haploid germ cells and in situ hybridization studies indicate that HFH-4 expression is confined to stages I-VII of spermatogenesis. This pattern of HFH-4 gene expression during the early stages of differentiation of haploid germ cells suggests that HFH-4 may play a role in regulating stage-specific gene expression and cell-fate determination during lung development and in spermatogenesis.
Resumo:
A method for the quantitative estimation of instability with respect to deamidation of the asparaginyl (Asn) residues in proteins is described. The procedure involves the observation of several simple aspects of the three-dimensional environment of each Asn residue in the protein and a calculation that includes these observations, the primary amino acid residue sequence, and the previously reported complete set of sequence-dependent rates of deamidation for Asn pentapeptides. This method is demonstrated and evaluated for 23 proteins in which 31 unstable and 167 stable Asn residues have been reported and for 7 unstable and 63 stable Asn residues that have been reported in 61 human hemoglobin variants. The relative importance of primary structure and three-dimensional structure in Asn deamidation is estimated.
Resumo:
Recently, a large family of transducer proteins in the Archaeon Halobacterium salinarium was identified. On the basis of the comparison of the predicted structural domains of these transducers, three distinct subfamilies of transducers were proposed. Here we report isolation, complete gene sequences, and analysis of the encoded primary structures of transducer gene htrII, a member of family B, and its blue light receptor gene (sopII) of sensory rhodopsin II (SRII). The start codon ATG of the 714-bp sopII gene is one nucleotide beyond the termination codon TGA of the 2298-bp htrII gene. The deduced protein sequence of HtrII predicts a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm. HtrII has a common feature with HtrI, the sensory rhodopsin I transducer; like HtrI, HtrII possesses a hydrophilic loop structure just after the second transmembrane segment. The C-terminal 299 residues (765 amino acid residues total) of HtrII show strong homology to the signaling and methylation domain of eubacterial transducer Tsr. The hydropathy plot of the primary structure of SRII indicates seven membrane-spanning alpha-helical segments, a characteristic feature of retinylidene proteins ("rhodopsins") from a widespread family of photoactive pigments. SRII shows high identity with SRI (42%), bacteriorhodopsin (BR) (32%), and halorhodopsin (24%). The crucial positions for retinal binding sites in these proteins are nearly identical, with the exception of Met-118 (numbering according to the mature BR sequence), which is replaced by Val in SRII. In BR, residues Asp-85 and Asp-96 are crucial in proton pumping. In SRII, the position corresponding to Asp-85 in BR is conserved, but the corresponding position of Asp-96 is replaced by an aromatic Tyr. Coexpression of the htrII and sopII genes restores SRII phototaxis to a mutant (Pho81) that contains a deletion in the htrI/sopI and insertion in htrII/sopII regions. This paper describes the first example that both HtrI and HtrII exist in the same halobacterial cell, confirming that different sensory rhodopsins SRI and SRII in the same organism have their own distinct transducers.
Resumo:
SPC2 and SPC3 are two members of a family of subtilisin-related proteases which play essential roles in the processing of prohormones into their mature forms in the pancreatic B cell and many other neuroendocrine cells. To investigate the phylogenetic origins and evolutionary functions of SPC2 and SPC3 we have identified and cloned cDNAs encoding these enzymes from amphioxus (Branchiostoma californiensis), a primitive chordate. The amino acid sequence of preproSPC2 contains 689 aa and is 71% identical to human SPC2. In contrast, amphioxus prproSPC3 consists of 774 aa and exhibits 55% identity to human SPC3. These results suggest that the primary structure of SPC2 has been more highly conserved during evolution than that of SPC3. To further investigate the function(s) of SPC2 and SPC3 in amphioxus, we have determined the regional expression of these genes by using a reverse transcriptase-linked polymerase chain reaction (RT-PCR) assay. Whole amphioxus was dissected longitudinally into four equal-length segments and RNA was extracted. Using RT-PCR to simultaneously amplify SPC2 and SPC3 DNA fragments, we found that the cranial region (section 1) expressed equal amounts of SPC2 and SPC3 mRNAs, whereas in the caudal region (section 4) the SPC2-to-SPC3 ratio was 5:1. In the mid-body sections 2 and 3 the SPC2-to-SPC3 ratio was 1:5. By RT-PCR we also determined that amphioxus ILP, a homologue of mammalian insulin/insulin-like growth factor, was expressed predominately in section 3. These results suggest that the relative levels of SPC2 and SPC3 mRNAs are specifically regulated in various amphioxus tissues. Furthermore, the ubiquitous expression of these mRNAs in the organism indicates that they are involved in the processing of other precursor proteins in addition to proILP.
Resumo:
Synapsins are a family of neuron-specific synaptic vesicle-associated phosphoproteins that have been implicated in synaptogenesis and in the modulation of neurotransmitter release. In mammals, distinct genes for synapsins I and II have been identified, each of which gives rise to two alternatively spliced isoforms. We have now cloned and characterized a third member of the synapsin gene family, synapsin III, from human DNA. Synapsin III gives rise to at least one protein isoform, designated synapsin IIIa, in several mammalian species. Synapsin IIIa is associated with synaptic vesicles, and its expression appears to be neuron-specific. The primary structure of synapsin IIIa conforms to the domain model previously described for the synapsin family, with domains A, C, and E exhibiting the highest degree of conservation. Synapsin IIIa contains a novel domain, termed domain J, located between domains C and E. The similarities among synapsins I, II, and III in domain organization, neuron-specific expression, and subcellular localization suggest a possible role for synapsin III in the regulation of neurotransmitter release and synaptogenesis. The human synapsin III gene is located on chromosome 22q12–13, which has been identified as a possible schizophrenia susceptibility locus. On the basis of this localization and the well established neurobiological roles of the synapsins, synapsin III represents a candidate gene for schizophrenia.
Resumo:
The human transcription factor B-TFIID is comprised of TATA-binding protein (TBP) in complex with one TBP-associated factor (TAF) of 170 kDa. We report the isolation of the cDNA for TAFII170. By cofractionation and coprecipitation experiments, we show that the protein encoded by the cDNA encodes the TAF subunit of B-TFIID. Recombinant TAFII170 has (d)ATPase activity. Inspection of its primary structure reveals a striking homology with genes of other organisms, yeast MOT1, and Drosophila moira, which belongs to the Trithorax group. Both homologs were isolated in genetic screens as global regulators of pol II transcription. This supports our classification of B-TFIID as a pol II transcription factor and suggests that specific TBP–TAF complexes perform distinct functions during development.
Resumo:
Human deoxyribonucleoside kinases are required for the pharmacological activity of several clinically important anticancer and antiviral nucleoside analogs. Human deoxycytidine kinase and thymidine kinase 1 are described as cytosolic enzymes in the literature, whereas human deoxyguanosine kinase and thymidine kinase 2 are believed to be located in the mitochondria. We expressed the four human deoxyribonucleoside kinases as fusion proteins with the green fluorescent protein to study their intracellular locations in vivo. Our data showed that the human deoxycytidine kinase is located in the cell nucleus and the human deoxyguanosine kinase is located in the mitochondria. The fusion proteins between green fluorescent protein and thymidine kinases 1 and 2 were both predominantly located in the cytosol. Site-directed mutagenesis of a putative nuclear targeting signal, identified in the primary structure of deoxycytidine kinase, completely abolished nuclear import of the protein. Reconstitution of a deoxycytidine kinase-deficient cell line with the wild-type nuclear or the mutant cytosolic enzymes both restored sensitivity toward anticancer nucleoside analogs. This paper reports that a deoxyribonucleoside kinase is located in the cell nucleus and we discuss the implications for deoxyribonucleotide synthesis and phosphorylation of nucleoside analogs.
Resumo:
A non-I-domain integrin, α4β1, recognizes vascular cell adhesion molecule 1 (VCAM-1) and the IIICS portion of fibronectin. To localize regions of α4 critical for ligand binding, we swapped several predicted loops within or near the putative ligand-binding site of α4 (which spans repeats 2–5 of the seven N-terminal repeats) with the corresponding regions of α5. Swapping residues 112–131 in repeat 2, or residues 237–247 in repeat 4, completely blocked adhesion to immobilized VCAM-1 and connecting segment 1 (CS-1) peptide. However, swapping residues 40–52 in repeat 1, residues 151–164 in repeat 3, or residues 282–288 (which contain a putative cation binding motif) in repeat 5 did not affect or only slightly reduced adhesion to these ligands. The binding of several function-blocking antibodies is blocked by swapping residues 112–131, 151–164, and 186–191 (which contain previously identified residues critical for ligand binding, Tyr-187 and Gly-190). These results are consistent with the recently published β-propeller folding model of the integrin α4 subunit [Springer, T. A. (1997) Proc. Natl. Acad. Sci. USA 94, 65–72], in which seven four-stranded β-sheets are arranged in a torus around a pseudosymmetric axis. The regions of α4 critical for ligand binding are adjacent to each other and are located in the upper face, the predicted ligand-binding site, of the β-propeller model, although they are not adjacent in the primary structure.
Resumo:
In view of the well-established role of neurohypophysial hormones in osmoregulation of terrestrial vertebrates, lungfishes are a key group for study of the molecular and functional evolution of the hypothalamo-neurohypophysial system. Here we report on the primary structure of the precursors encoding vasotocin (VT) and [Phe2]mesotocin ([Phe2]MT) of the Australian lungfish, Neoceratodus forsteri. Genomic sequence analysis and Northern blot analysis confirmed that [Phe2]MT is a native oxytocin family peptide in the Australian lungfish, although it has been reported that the lungfish neurohypophysis contains MT. The VT precursor consists of a signal peptide, VT, that is connected to a neurophysin by a Gly-Lys-Arg sequence, and a copeptin moiety that includes a Leu-rich core segment and a glycosylation site. In contrast, the [Phe2]MT precursor does not contain a copeptin moiety. These structural features of the lungfish precursors are consistent with those in tetrapods, but different from those in teleosts where both VT and isotocin precursors contain a copeptin-like moiety without a glycosylation site at the carboxyl terminals of their neurophysins. Comparison of the exon/intron organization also supports homology of the lungfish [Phe2]MT gene with tetrapod oxytocin/MT genes, rather than with teleost isotocin genes. Moreover, molecular phylogenetic analysis shows that neurohypophysial hormone genes of the lungfish are closely related to those of the toad. The present results along with previous morphological findings indicate that the hypothalamo-neurohypophysial system of the lungfish has evolved along the tetrapod lineage, whereas the teleosts form a separate lineage, both within the class Osteichthyes.
Resumo:
Transmission of prions between mammalian species is thought to be limited by a “species barrier,” which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.
Resumo:
Squalene epoxidase, a membrane-associated enzyme that converts squalene to squalene 2,3-oxide, plays an important role in the maintenance of cholesterol homeostasis. In 1957, Bloch and colleagues identified a factor from rat liver cytosol termed “supernatant protein factor (SPF),” which promotes the squalene epoxidation catalyzed by rat liver microsomes with oxygen, NADPH, FAD, and phospholipid [Tchen, T. T. & Bloch, K. (1957) J. Biol. Chem. 226, 921–930]. Although purification of SPF by 11,000-fold was reported, no information is so far available on the primary structure or biological function of SPF. Here we report the cDNA cloning and expression of SPF from rat and human. The encoded protein of 403 amino acids belongs to a family of cytosolic lipid-binding/transfer proteins such as α-tocopherol transfer protein, cellular retinal binding protein, yeast phosphatidylinositol transfer protein (Sec14p), and squid retinal binding protein. Recombinant SPF produced in Escherichia coli enhances microsomal squalene epoxidase activity and promotes intermembrane transfer of squalene in vitro. SPF mRNA is expressed abundantly in the liver and small intestine, both of which are important sites of cholesterol biosynthesis. SPF is expressed significantly in isolated hepatocytes, but the expression level was markedly decreased after 48 h of in vitro culture. Moreover, SPF was not detectable in most of the cell lines tested, including HepG2 and McARH7777 hepatomas. Transfection of SPF cDNA in McARH7777 significantly stimulated de novo cholesterol biosynthesis. These data suggest that SPF is a cytosolic squalene transfer protein capable of regulating cholesterol biosynthesis.