12 resultados para POINT IMAGING TECHNIQUE

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using a new NMR correlation-peak imaging technique, we were able to investigate noninvasively the spatial distribution of carbohydrates and amino acids in the hypocotyl of castor bean seedlings. In addition to the expected high sucrose concentration in the phloem area of the vascular bundles, we could also observe high levels of sucrose in the cortex parenchyma, but low levels in the pith parenchyma. In contrast, the glucose concentration was found to be lower in the cortex parenchyma than in the pith parenchyma. Glutamine and/or glutamate was detected in the cortex parenchyma and in the vascular bundles. Lysine and arginine were mainly visible in the vascular bundles, whereas valine was observed in the cortex parenchyma, but not in the vascular bundles. Although the physiological significance of these metabolite distribution patterns is not known, they demonstrate the potential of spectroscopic NMR imaging to study noninvasively the physiology and spatial metabolic heterogeneity of living plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In cardiac myocytes Ca2+ cross-signaling between Ca2+ channels and ryanodine receptors takes place by exchange of Ca2+ signals in microdomains surrounding dyadic junctions, allowing first the activation and then the inactivation of the two Ca2+-transporting proteins. To explore the details of Ca2+ signaling between the two sets of receptors we measured the two-dimensional cellular distribution of Ca2+ at 240 Hz by using a novel confocal imaging technique. Ca2+ channel-triggered Ca2+ transients could be resolved into dynamic “Ca2+ stripes” composed of hundreds of discrete focal Ca2+ releases, appearing as bright fluorescence spots (radius ≅ 0.5 μm) at reproducible sites, which often coincided with t-tubules as visualized with fluorescent staining of the cell membrane. Focal Ca2+ releases triggered stochastically by Ca2+ current (ICa) changed little in duration (≅7 ms) and size (≅100,000 Ca ions) between −40 and +60 mV, but their frequency of activation and first latency mirrored the kinetics and voltage dependence of ICa. The resolution of 0.95 ± 0.13 reproducible focal Ca2+ release sites per μm3 in highly Ca2+-buffered cells, where diffusion of Ca2+ is limited to 50 nm, suggests the presence of about one independent, functional Ca2+ release site per half sarcomere. The density and distribution of Ca2+ release sites suggest they correspond to dyadic junctions. The abrupt onset and termination of focal Ca2+ releases indicate that the cluster of ryanodine receptors in individual dyadic junctions may operate in a coordinated fashion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Snapshot" images of localized Ca2+ influx into patch-clamped chromaffin cells were captured by using a recently developed pulsed-laser imaging system. Transient opening of voltage-sensitive Ca2+ channels gave rise to localized elevations of Ca2+ that had the appearance of either "hotspots" or partial rings found immediately beneath the plasma membrane. When the Ca2+ imaging technique was employed in conjunction with flame-etched carbon-fiber electrodes to spatially map the release sites of catecholamines, it was observed that the sites of Ca2+ entry and catecholamine release were colocalized. These results provide functional support for the idea that secretion occurs from "active zone"-like structures in neuroendocrine cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a multichannel tomographic technique to detect fluorescent objects embedded in thick (6.4 cm) tissue-like turbid media using early-arriving photons. The experiments use picosecond laser pulses and a streak camera with single photon counting capability to provide short time resolution and high signal-to-noise ratio. The tomographic algorithm is based on the Laplace transform of an analytical diffusion approximation of the photon migration process and provides excellent agreement between the actual positions of the fluorescent objects and the experimental estimates. Submillimeter localization accuracy and 4- to 5-mm resolution are demonstrated. Moreover, objects can be accurately localized when fluorescence background is present. The results show the feasibility of using early-arriving photons to image fluorescent objects embedded in a turbid medium and its potential in clinical applications such as breast tumor detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imaging of DNA, keyhole limpet hemocyanin, mouse monoclonal IgG, and glucose oxidase on a mica substrate has been accomplished by scanning electrochemical microscopy with a tungsten tip. The technique requires the use of a high relative humidity to form a thin film of water on the mica surface that allows electrochemical reactions to take place at the tip and produce a faradaic current (≈1 pA) that can be used to control tip position. The effect of relative humidity and surface pretreatment with buffer solutions on the ionic conductivity of a mica surface was investigated to find appropriate conditions for imaging. Resolution of the order of 1 nm was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser-polarized gases (3He and 129Xe) are currently being used in magnetic resonance imaging as strong signal sources that can be safely introduced into the lung. Recently, researchers have been investigating other tissues using 129Xe. These studies use xenon dissolved in a carrier such as lipid vesicles or blood. Since helium is much less soluble than xenon in these materials, 3He has been used exclusively for imaging air spaces. However, considering that the signal of 3He is more than 10 times greater than that of 129Xe for presently attainable polarization levels, this work has focused on generating a method to introduce 3He into the vascular system. We addressed the low solubility issue by producing suspensions of 3He microbubbles. Here, we provide the first vascular images obtained with laser-polarized 3He. The potential increase in signal and absence of background should allow this technique to produce high-resolution angiographic images. In addition, quantitative measurements of blood flow velocity and tissue perfusion will be feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rolling circle amplification (RCA) is a surface-anchored DNA replication reaction that can be exploited to visualize single molecular recognition events. Here we report the use of RCA to visualize target DNA sequences as small as 50 nts in peripheral blood lymphocytes or in stretched DNA fibers. Three unique target sequences within the cystic fibrosis transmembrane conductance regulator gene could be detected simultaneously in interphase nuclei, and could be ordered in a linear map in stretched DNA. Allele-discriminating oligonucleotide probes in conjunction with RCA also were used to discriminate wild-type and mutant alleles in the cystic fibrosis transmembrane conductance regulator, p53, BRCA-1, and Gorlin syndrome genes in the nuclei of cultured cells or in DNA fibers. These observations demonstrate that signal amplification by RCA can be coupled to nucleic acid hybridization and multicolor fluorescence imaging to detect single nucleotide changes in DNA within a cytological context or in single DNA molecules. This provides a means for direct physical haplotyping and the analysis of somatic mutations on a cell-by-cell basis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specific targeting of the recombinant, Ca2+ -sensitive photoprotein, aequorin to intracellular organelles has provided new insights into the mechanisms of intracellular Ca2+ homeostasis. When applied to small mammalian cells, a major limitation of this technique has been the need to average the signal over a large number of cells. This prevents the identification of inter- or intracellular heterogeneities. Here we describe the imaging in single mammalian cells (CHO.T) of [Ca2+] with recombinant chimeric aequorin targeted to mitochondria. This was achieved by optimizing expression of the protein through intranuclear injection of cDNA and through the use of a charge-coupled device camera fitted with a dual microchannel plate intensifier. This approach allows accurate quantitation of the kinetics and extent of the large changes in mitochondrial matrix [Ca2+] ([Ca2+](m)) that follow receptor stimulation and reveal different behaviors of mitochondrial populations within individual cells. The technique is compared with measurements of [Ca2+](m) using the fluorescent indicator, rhod2. Comparison of [Ca2+](m) with the activity of the Ca2+ -sensitive matrix enzyme, pyruvate dehydrogenase (PDH), reveals that this enzyme is a target of the matrix [Ca2+] changes. Peak [Ca2+](m) values following receptor stimulation are in excess of those necessary for full activation of PDH in situ, but may be necessary for the activation of other mitochondrial dehydrogenases. Finally, the data suggest that the complex regulation of PDH activity by a phosphorylation-dephosphorylation cycle may provide a means by which changes in the frequency of cytosolic (and hence mitochondrial) [Ca2+] oscillations can be decoded by mitochondria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The previously established cortical representation of rat whiskers in layer IV of the cortex contains distinct cylindrical columns of cellular aggregates, which are termed barrels and correlate in a one-to-one relation to whiskers on the contralateral rat face. In the present study, functional magnetic resonance imaging (fMRI) of the rat brain was used to map whisker barrel activation during mechanical up-down movement (+/- 2.5 mm amplitude at 8 Hz) of single/multiple whisker(s). Multislice gradient echo fMRI experiments were performed at 7 T with in-plane image resolution of 220 x 220 microns, slice thickness of 1 mm, and echo time of 16 ms. Highly significant (P < 0.001) and localized contralateral regions of activation were observed upon stimulation of single/multiple whisker(s). In all experiments (n = 10), the locations of activation relative to bregma and midline were highly correlated with the neuroanatomical position of the corresponding whisker barrels, and the results were reproducible intra- and interanimal. Our results indicate that fMRI based on blood oxygenation level-dependent image contrast has the sensitivity to depict activation of a single whisker barrel in the rat brain. This noninvasive technique will supplement existing methods in the study of rat barrel cortex and should be particularly useful for the long-term investigations of central nervous system in the same animal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique is described that greatly increases the efficiency of recovering specific locus point mutations in zebrafish (Danio rerio). Founder individuals that were mosaic for point mutations were produced by mutagenizing postmeiotic gametes with the alkylating agent N-ethyl-N-nitrosourea. Under optimal conditions, each founder carried an average of 10 mutations affecting genes required for embryogenesis. Moreover, approximately 2% of these founders transmitted new mutations at any prespecified pigmentation locus. Analyses of new pigmentation mutations confirmed that most were likely to be point mutations. Thus, mutagenesis of postmeiotic gametes with N-ethyl-N-nitrosourea yielded frequencies of point mutations at specific loci that were 10- to 15-fold higher than previously achieved in zebrafish. Our procedure should, therefore, greatly facilitate recovery of multiple mutant alleles at any locus of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organelle acidification is an essential element of the endosomal-lysosomal pathway, but our understanding of the mechanisms underlying progression through this pathway has been hindered by the absence of adequate methods for quantifying intraorganelle pH. To address this problem in neurons, we developed a direct quantitative method for accurately determining the pH of endocytic organelles in live cells. In this report, we demonstrate that the ratiometric fluorescent pH indicator 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) is the most advantageous available probe for such pH measurements. To measure intraorganelle pH, cells were labeled by endocytic uptake of HPTS, the ratio of fluorescence emission intensities at excitation wavelengths of 450 nm and 405 nm (F450/405) was calculated for each organelle, and ratios were converted to pH values by using standard curves for F450/405 vs. pH. Proper calibration is critical for accurate measurement of pH values: standard curves generated in vitro yielded artifactually low organelle pH values. Calibration was unaffected by the use of culture medium buffered with various buffers or different cell types. By using this technique, we show that both acidic and neutral endocytically derived organelles exist in the axons of sympathetic neurons in different steady-state proportions than in the cell body. Furthermore, we demonstrate that these axonal organelles have a bimodal pH distribution, indicating a rapid acidification step in their maturation that reduces the average pH of a fraction of the organelles by 2 pH units while leaving few organelles of intermediate pH at steady state. Finally, we demonstrate a spatial gradient or organelle pH along axons, with the relative frequency of acidic organelles increasing with proximity to the cell body.