4 resultados para PLATINUM-MONOLAYER ELECTROCATALYSTS

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both cis-diamminedichloroplatinum(II) (cisplatin or cis-DDP) and trans-diamminedichloroplatinum(II) form covalent adducts with DNA. However, only the cis isomer is a potent anticancer agent. It has been postulated that the selective action of cis-DDP occurs through specific binding of nuclear proteins to cis-DDP-damaged DNA sites and that binding blocks DNA repair. We find that a very abundant nuclear protein, the linker histone H1, binds much more strongly to cis-platinated DNA than to trans-platinated or unmodified DNA. In competition experiments, H1 is shown to bind much more strongly than HMG1, which had been previously considered a major candidate for such binding in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model is described for calculating the electrostatic energy of lipid domains at the air-water interface, taking account of dipole-dipole repulsions between the lipid molecules themselves, as well as interactions between the molecular dipoles and image dipoles in the subphase. The model assumes that the molecular dipoles within the monolayer arise from the terminal methyl groups of the hydrophobic hydrocarbon chains of the lipid molecules, and that on average they are oriented perpendicular to the plane of the monolayer. With this model the role of the subphase is to enhance rather than suppress the effects of dipole-dipole repulsions.