2 resultados para PHENOLICS
em National Center for Biotechnology Information - NCBI
Resumo:
The ability to induce galls on plants has evolved independently in many insect orders, but the adaptive significance and evolutionary consequences of gall induction are still largely unknown. We studied these questions by analyzing the concentrations of various plant defense compounds in willow leaves and sawfly galls. We found that the galls are probably nutritionally beneficial for the sawfly larvae, because the concentrations of most defensive phenolics are substantially lower in gall interiors than in leaves. More importantly, changes in chemistry occur in a similar coordinated pattern in all studied willow species, which suggests that the insects control the phenolic biosynthesis in their hosts. The resulting convergence of the chemical properties of the galls both within and between host species indicates that the role of plant chemistry in the evolution of host shifts may be fundamentally less significant in gallers than in other phytophagous insects.
Resumo:
Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite Triphysaria versicolor. Several phenolic acids, flavonoids, and the quinone 2,6-dimethoxy-p-benzoquinone induced haustoria in T. versicolor root tips within hours after treatment. The concentration at which different molecules were active varied widely, the most active being 2,6-dimethoxy-p-benzoquinone and the anthocyanidin peonidin. Maize (Zea mays) seeds are rich sources of molecules that induce T. versicolor haustoria in vitro, and chromatographic analyses indicated that the active molecules present in maize-seed rinses include anthocyanins, other flavonoids, and simple phenolics. The presence of different classes of inducing molecules in seed rinses was substantiated by the observation that maize kernels deficient in chalcone synthase, a key enzyme in flavonoid biosynthesis, released haustoria-inducing molecules, although at reduced levels compared with wild-type kernels. We discuss these results in light of existing models for host perception in the related parasitic plant Striga.