3 resultados para PARTITIONS

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The important role of furin in the proteolytic activation of many pathogenic molecules has made this endoprotease a target for the development of potent and selective antiproteolytic agents. Here, we demonstrate the utility of the protein-based inhibitor α1-antitrypsin Portland (α1-PDX) as an antipathogenic agent that can be used prophylactically to block furin-dependent cell killing by Pseudomonas exotoxin A. Biochemical analysis of the specificity of a bacterially expressed His- and FLAG-tagged α1-PDX (α1-PDX/hf) revealed the selectivity of the α1-PDX/hf reactive site loop for furin (Ki, 600 pM) but not for other proprotein convertase family members or other unrelated endoproteases. Kinetic studies show that α1-PDX/hf inhibits furin by a slow tight-binding mechanism characteristic of serpin molecules and functions as a suicide substrate inhibitor. Once bound to furin’s active site, α1-PDX/hf partitions with equal probability to undergo proteolysis by furin at the C-terminal side of the reactive center -Arg355-Ile-Pro-Arg358-↓ or to form a kinetically trapped SDS-stable complex with the enzyme. This partitioning between the complex-forming and proteolytic pathways contributes to the ability of α1-PDX/hf to differentially inhibit members of the proprotein convertase family. Finally, we propose a structural model of the α1-PDX-reactive site loop that explains the high degree of enzyme selectivity of this serpin and which can be used to generate small molecule furin inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple cladogenetic theory suggests that gene genealogies can be used to detect mixis in a population and delineate reproductively isolated groups within sexual taxa. We have taken this approach in a study of Coccidioides immitis, an ascomycete fungus responsible for a recent epidemic of coccidioidomycosis (Valley fever) in California. To test whether this fungus represents a single sexual species throughout its entire geographic range, we have compared genealogies from fragments of five nuclear genes. The five genealogies show multiple incompatibilities indicative of sex, but also share a branch that partitions the isolates into two reproductively isolated taxa, one centered in California and the other outside California. We conclude that coccidioidomycosis can be caused by two distinct noninterbreeding taxa. This result should aid the future study of the disease and illustrates the utility of the genealogical approach in population genetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syntenin is a PDZ protein that binds the cytoplasmic C-terminal FYA motif of the syndecans. Syntenin is widely expressed. In cell fractionation experiments, syntenin partitions between the cytosol and microsomes. Immunofluorescence microscopy localizes endogenous and epitope-tagged syntenin to cell adhesion sites, microfilaments, and the nucleus. Syntenin is composed of at least three domains. Both PDZ domains of syntenin are necessary to target reporter tags to the plasma membrane. The addition of a segment of 10 amino acids from the N-terminal domain of syntenin to these PDZ domains increases the localization of the tags to stress fibers and induces the formation of long, branching plasma membrane extensions. The addition of the complete N-terminal region, in contrast, reduces the localization of the tags to plasma membrane/adhesion sites and stress fibers, and reduces the morphotypical effects. Recombinant domains of syntenin with the highest plasma membrane localization display the lowest nuclear localization. Syndecan-1, E-cadherin, β-catenin, and α-catenin colocalize with syntenin at cell-cell contacts in epithelial cells, and coimmunoprecipitate with syntenin from extracts of these cells. These results suggest a role for syntenin in the composition of adherens junctions and the regulation of plasma membrane dynamics, and imply a potential role for syntenin in nuclear processes.