54 resultados para PARAVENTRICULAR NUCLEUS OF HYPOTHALAMUS

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuropeptide galanin is predominantly expressed by the lactotrophs (the prolactin secreting cell type) in the rodent anterior pituitary and in the median eminence and paraventricular nucleus of the hypothalamus. Prolactin and galanin colocalize in the same secretory granule, the expression of both proteins is extremely sensitive to the estrogen status of the animal. The administration of estradiol-17β induces pituitary hyperplasia followed by adenoma formation and causes a 3,000-fold increase in the galanin mRNA content of the lactotroph. To further study the role of galanin in prolactin release and lactotroph growth we now report the generation of mice carrying a loss-of-function mutation of the endogenous galanin gene. There is no evidence of embryonic lethality and the mutant mice grow normally. The specific endocrine abnormalities identified to date, relate to the expression of prolactin. Pituitary prolactin message levels and protein content of adult female mutant mice are reduced by 30–40% compared with wild-type controls. Mutant females fail to lactate and pups die of starvation/dehydration unless fostered onto wild-type mothers. Prolactin secretion in mutant females is markedly reduced at 7 days postpartum compared with wild-type controls with an associated failure in mammary gland maturation. There is an almost complete abrogation of the proliferative response of the lactotroph to high doses of estrogen, with a failure to up-regulate prolactin release, STAT5 expression or to increase pituitary cell number. These data further support the hypothesis that galanin acts as a paracrine regulator of prolactin expression and as a growth factor to the lactotroph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new means of direct visualization of the early events of viral infection by selective fluorescence labeling of viral proteins coupled with digital imaging microscopy is reported. The early phases of viral infection have great importance for understanding viral replication and pathogenesis. Vesicular stomatitis virus, the best-studied rhabdovirus, is composed of an RNA genome of negative sense, five viral proteins, and membrane lipids derived from the host cell. The glycoprotein of vesicular stomatitis virus was labeled with fluorescein isothiocyanate, and the labeled virus was incubated with baby hamster kidney cells. After initiation of infection, the fluorescence of the labeled glycoprotein was first seen inside the cells in endocytic vesicles. The fluorescence progressively migrated to the nucleus of infected cells. After 1 h of infection, the virus glycoprotein was concentrated in the nucleus and could be recovered intact in a preparation of purified nuclei. These results suggest that uncoating of the viral RNA occurs close to the nuclear membrane, which would precede transcription of the leader RNA that enters the nucleus to shut off cellular RNA synthesis and DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These studies sought to determine if neurons in the estrogen receptor-α knockout (ERαKO) mouse brain concentrated 16α-[125I]iodo-11β-methoxy-17β-estradiol (125I-estrogen), and if so, whether estrogen binding augmented the expression of progesterone receptor (PR) mRNA. Mice were injected with 125I-estrogen and cryostat sections thaw mounted onto emulsion-coated slides. After 30–90 days of exposure, cells with a nuclear uptake and retention of 125I-estrogen were observed in a number of ERαKO mouse brain regions including the preoptic nucleus and arcuate nucleus of the hypothalamus, bed nucleus of the stria terminalis, and amygdala, although the number of labeled cells and intensity of nuclear concentration was markedly attenuated when compared with wild-type littermates. Competition studies with excess 17β-estradiol, diethylstilbestrol, or moxestrol, but not with R5020 or dihydrotestosterone, prevented the nuclear concentration of 125I-estrogen. To determine if the low level of estrogen binding was capable of regulating gene expression, in situ hybridization was used to evaluate PR mRNA in the brain. ERαKO and wild-type mice were ovariectomized and treated with vehicle or 17β-estradiol, and brains were sectioned and hybridized with a PR cRNA probe. Analysis of hybridization signal revealed a similar, low level of PR mRNA in ovariectomized wild-type and homozygous mice, and a marked increase in expression after treatment of ovariectomized animals with 17β-estradiol, with the level of hybridization signal being significantly higher in wild-type animals when compared with ERαKO mice. The results demonstrate that estrogen binds in the ERαKO brain and is capable of modulating PR gene expression, thus supporting the presence and functionality of a nonclassical estrogen receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously identified a novel nuclear RNA species derived from the preproenkephalin (PPE) gene. This transcript, which we have named PPEIA-3′ RNA, hybridizes with probes directed at a region of PPE intron A downstream of an alternative germ-cell transcription start site, but does not contain PPE protein coding sequences. We now report that estrogen treatment of ovariectomized rats increases the expression of conventional PPE heteronuclear RNA, and also induces the expression of PPEIA-3′ RNA, apparently in separate cell populations within the ventromedial nucleus of the hypothalamus. Further, we show that cells expressing PPEIA-3′ are found in several neuronal groups in the rat forebrain and brainstem, with a distinct topographical distribution. High densities of PPEIA-3′ containing cells are found in the reticular thalamic nucleus, the basal forebrain, the vestibular complex, the deep cerebellar nuclei, and the trapezoid body, a pattern that parallels the distribution of atypical nuclear RNAs described by other groups. These results suggest that this diverse neuronal population shares a common set of nuclear factors responsible for the expression and retention of this atypical RNA transcript. The implication of these results for cell-specific gene transcription and regulation in the brain and the possible relationship of PPEIA-3′ RNA and other atypical nuclear RNAs is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although it has been known for some time that estrogen exerts a profound influence on brain development a definitive demonstration of the role of the classical estrogen receptor (ERα) in sexual differentiation has remained elusive. In the present study we used a sexually dimorphic population of dopaminergic neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) to test the dependence of sexual differentiation on a functional ERα by comparing the number of tyrosine hydroxylase (TH)-immunoreactive neurons in the AVPV of wild-type (WT) mice with that of mice in which the ERα had been disrupted by homologous recombination (ERKOα). Only a few ERα-immunoreactive neurons were detected in the AVPV of ERKOα mice, and the number of TH-immunoreactive neurons was three times that of WT mice, suggesting that disruption of the ERα gene feminized the number of TH-immunoreactive neurons. In contrast, the AVPV contains the same number of TH-immunoreactive neurons in testicular feminized male mice as in WT males, indicating that sexual differentiation of this population of neurons is not dependent on an intact androgen receptor. The number of TH-immunoreactive neurons in the AVPV of female ERKOα mice remained higher than that of WT males, but TH staining appeared to be lower than that of WT females. Thus, the sexual differentiation of dopamine neurons in the AVPV appears to be receptor specific and dependent on the perinatal steroid environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mid-winter development of refractoriness to melatonin (Mel) triggers recrudescence of the atrophied reproductive apparatus of rodents. As a consequence, over-wintering animals become reproductively competent just before the onset of spring conditions favorable for breeding. The neural target tissues that cease to respond to winter Mel signals have not been identified. We now report that the suprachiasmatic nucleus of the hypothalamus, which contains the principal circadian clock, and the reuniens and paraventricular nuclei of the thalamus, each independently becomes refractory to melatonin. Small implants of Mel that were left in place for 40 wk and that act locally on these brain nuclei, induced testicular regression within 6 wk in male Siberian hamsters; 12 wk later Mel implants no longer suppressed reproduction and gonadal recrudescence ensued. Hamsters that were then given a systemic Mel infusion s.c. immediately initiated a second gonadal regression, implying that neurons at each site become refractory to Mel without compromising responsiveness of other Mel target tissues. Refractoriness occurs locally and independently at each neural target tissue, rather than in a separate “refractoriness” substrate. Restricted, target-specific actions of Mel are consistent with the independent regulation by day length of the several behavioral and physiological traits that vary seasonally in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several P2X receptor subunits were recently cloned; of these, one was cloned from the rat vas deferens (P2X1) and another from pheochromocytoma (PC12) cells differentiated with nerve growth factor (P2X2). Peptides corresponding to the C-terminal portions of the predicted receptor proteins (P2X1 391-399 and P2X2 460-472) were used to generate antisera in rabbits. The specificities of antisera were determined by staining human embryonic kidney cells stably transfected with either P2X1 or P2X2 receptors and by absorption controls with the cognate peptides. In the vas deferens and the ileal submucosa, P2X1 immunoreactivity (ir) was restricted to smooth muscle, whereas P2X2-ir was restricted to neurons and their processes. Chromaffin cells of the adrenal medulla and PC12 cells contained both P2X1- and P2X2-ir. P2X1-ir was also found in smooth muscle cells of the bladder, cardiac myocytes, and nerve fibers and terminals in the superficial dorsal horn of the spinal cord. In contrast, P2X2-ir was observed in scattered cells of the anterior pituitary, neurons in the hypothalamic arcuate and paraventricular nuclei, and catecholaminergic neurons in the olfactory bulb, the substantia nigra, ventral tegmental area, and locus coeruleus. A plexus of nerve fibers and terminals in the nucleus of the solitary tract contained P2X2-ir. This staining disappeared after nodose ganglionectomy, consistent with a presynaptic function. The location of the P2X1 subunit in smooth muscle is consistent with its role as a postjunctional receptor in autonomic transmission, while in neurons, these receptors appear in both postsynaptic and presynaptic locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington disease stems from a mutation of the protein huntingtin and is characterized by selective loss of discrete neuronal populations in the brain. Despite a massive loss of neurons in the corpus striatum, NO-generating neurons are intact. We recently identified a brain-specific protein that associates with huntingtin and is designated huntingtin-associated protein (HAP1). We now describe selective neuronal localizations of HAP1. In situ hybridization studies reveal a resemblance of HAP1 and neuronal nitric oxide synthase (nNOS) mRNA localizations with dramatic enrichment of both in the pedunculopontine nuclei, the accessory olfactory bulb, and the supraoptic nucleus of the hypothalamus. Both nNOS and HAP1 are enriched in subcellular fractions containing synaptic vesicles. Immunocytochemical studies indicate colocalizations of HAP1 and nNOS in some neurons. The possible relationship of HAP1 and nNOS in the brain is reminiscent of the relationship of dystrophin and nNOS in skeletal muscle and suggests a role of NO in Huntington disease, analogous to its postulated role in Duchenne muscular dystrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cAMP response element-binding protein (CREB) is an activity-dependent transcription factor that is involved in neural plasticity. The kinetics of CREB phosphorylation have been suggested to be important for gene activation, with sustained phosphorylation being associated with downstream gene expression. If so, the duration of CREB phosphorylation might serve as an indicator for time-sensitive plastic changes in neurons. To screen for regions potentially involved in dopamine-mediated plasticity in the basal ganglia, we used organotypic slice cultures to study the patterns of dopamine- and calcium-mediated CREB phosphorylation in the major subdivisions of the striatum. Different durations of CREB phosphorylation were evoked in the dorsal and ventral striatum by activation of dopamine D1-class receptors. The same D1 stimulus elicited (i) transient phosphorylation (≤15 min) in the matrix of the dorsal striatum; (ii) sustained phosphorylation (≤2 hr) in limbic-related structures including striosomes, the nucleus accumbens, the fundus striati, and the bed nucleus of the stria terminalis; and (iii) prolonged phosphorylation (up to 4 hr or more) in cellular islands in the olfactory tubercle. Elevation of Ca2+ influx by stimulation of L-type Ca2+ channels, NMDA, or KCl induced strong CREB phosphorylation in the dorsal striatum but not in the olfactory tubercle. These findings differentiate the response of CREB to dopamine and calcium signals in different striatal regions and suggest that dopamine-mediated CREB phosphorylation is persistent in limbic-related regions of the neonatal basal ganglia. The downstream effects activated by persistent CREB phosphorylation may include time-sensitive neuroplasticity modulated by dopamine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Varicella-Zoster virus (VZV) is a herpesvirus that becomes latent in sensory neurons after primary infection (chickenpox) and subsequently may reactivate to cause zoster. The mechanism by which this virus maintains latency, and the factors involved, are poorly understood. Here we demonstrate, by immunohistochemical analysis of ganglia obtained at autopsy from seropositive patients without clinical symptoms of VZV infection that viral regulatory proteins are present in latently infected neurons. These proteins, which localize to the nucleus of cells during lytic infection, predominantly are detected in the cytoplasm of latently infected neurons. The restriction of regulatory proteins from the nucleus of latently infected neurons might interrupt the cascade of virus gene expression that leads to a productive infection. Our findings raise the possibility that VZV has developed a novel mechanism for maintenance of latency that contrasts with the transcriptional repression that is associated with latency of herpes simplex virus, the prototypic alpha herpesvirus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the nucleus. We also examined the response of single neurons within the N.Ov to tonal stimuli and sound localization cues. Afferents to the N.Ov originated with a diffuse population of neurons located bilaterally within the lateral shell, core, and medial shell subdivisions of the central nucleus of the inferior colliculus. Additional afferent input originated from the ipsilateral ventral nucleus of the lateral lemniscus. No afferent input was provided to the N.Ov from the external nucleus of the inferior colliculus or the optic tectum. The N.Ov was tonotopically organized with high frequencies represented dorsally and low frequencies ventrally. Although neurons in the N.Ov responded to localization cues, there was no apparent topographic mapping of these cues within the nucleus, in contrast to the tectal pathway. However, nearly all possible types of binaural response to sound localization cues were represented. These findings suggest that in the thalamo-telencephalic auditory pathway, sound localization is subserved by a nontopographic representation of auditory space.