2 resultados para P-Closed Space

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome b-type NAD(P)H oxidoreductases are involved in many physiological processes, including iron uptake in yeast, the respiratory burst, and perhaps oxygen sensing in mammals. We have identified a cytosolic cytochrome b-type NAD(P)H oxidoreductase in mammals, a flavohemoprotein (b5+b5R) containing cytochrome b5 (b5) and b5 reductase (b5R) domains. A genetic approach, using blast searches against dbest for FAD-, NAD(P)H-binding sequences followed by reverse transcription–PCR, was used to clone the complete cDNA sequence of human b5+b5R from the hepatoma cell line Hep 3B. Compared with the classical single-domain b5 and b5R proteins localized on endoplasmic reticulum membrane, b5+b5R also has binding motifs for heme, FAD, and NAD(P)H prosthetic groups but no membrane anchor. The human b5+b5R transcript was expressed at similar levels in all tissues and cell lines that were tested. The two functional domains b5* and b5R* are linked by an approximately 100-aa-long hinge bearing no sequence homology to any known proteins. When human b5+b5R was expressed as c-myc adduct in COS-7 cells, confocal microscopy revealed a cytosolic localization at the perinuclear space. The recombinant b5+b5R protein can be reduced by NAD(P)H, generating spectrum typical of reduced cytochrome b with alpha, beta, and Soret peaks at 557, 527, and 425 nm, respectively. Human b5+b5R flavohemoprotein is a NAD(P)H oxidoreductase, demonstrated by superoxide production in the presence of air and excess NAD(P)H and by cytochrome c reduction in vitro. The properties of this protein make it a plausible candidate oxygen sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the effects of eye position on saccades evoked by electrical stimulation of the intraparietal sulcus (IPS) of rhesus monkeys. Microstimulation evoked saccades from sites on the posterior bank, floor, and the medial bank of the IPS. The size and direction of the eye movements varied as a function of initial eye position before microstimulation. At many stimulation sites, eye position affected primarily the amplitude and not the direction of the evoked saccades. These "modified vector saccades" were characteristic of most stimulation-sensitive zones in the IPS, with the exception of a narrow strip located mainly on the floor of the sulcus. Stimulation in this "intercalated zone" evoked saccades that moved the eyes into a particular region in head-centered space, independent of the starting position of the eyes. This latter response is compatible with the stimulation site representing a goal zone in head-centered coordinates. On the other hand, the modified vector saccades observed outside the intercalated zone are indicative of a more distributed representation of head-centered space. A convergent projection from many modified vector sites onto each intercalated site may be a basis for a transition from a distributed to a more explicit representation of space in head-centered coordinates.