2 resultados para Organic Rankine Cycle (ORC)

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The large potential of redox enzymes to carry out formation of high value organic compounds motivates the search for innovative strategies to regenerate the cofactors needed by their biocatalytic cycles. Here, we describe a bioreactor where the reducing power to the cycle is supplied directly to purified cytochrome CYP101 (P450cam; EC 1.14.15.1) through its natural redox partner (putidaredoxin) using an antimony-doped tin oxide working electrode. Required oxygen was produced at a Pt counter electrode by water electrolysis. A continuous catalytic cycle was sustained for more than 5 h and 2,600 enzyme turnovers. The maximum product formation rate was 36 nmol of 5-exo-hydroxycamphor/nmol of CYP101 per min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pacing of the marine carbon cycle by orbital forcing during the Pliocene and Pleistocene Ice Ages [past 2.5 million years (Myr)] is well known. As older deep-sea sediment records are being studied at greater temporal resolution, it is becoming clear that similar fluctuations in the marine carbon system have occurred throughout the late Mesozoic and Tertiary, despite the absence of large continental ice sheets over much of this time. Variations in both the organic and the calcium carbonate components of the marine carbon system seem to have varied cyclically in response to climate forcing, and carbon and carbonate time series appear to accurately characterize the frequency spectrum of ancient climatic change. For the past 35 Myr, much of the variance in carbonate content carries the “polar” signal of obliquity [41,000 years (41 kyr)] forcing. Over the past 125 Myr, there is evidence from marine sediments of the continued role of precessional (≈21 kyr) climatic cycles. Repeat patterns of sedimentation at about 100, 400, and 2,400 kyr, the modulation periods of precession, persistently enter into marine carbon cycle records as well. These patterns suggest a nonlinear response of climate and/or the sedimentation of organic carbon and carbonates to precessional orbital perturbations. Nonlinear responses of the carbon system may help to amplify relatively weak orbital insolation anomalies into more significant climatic perturbations through positive feedback effects. Nonlinearities in the carbon cycle may have transformed orbital-climatic cycles into long-wavelength features on time scales comparable to the residence times of carbon and nutrient elements in the ocean.