2 resultados para Optimizations of concrete traces

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the types of memory traces recovered by the medial temporal lobe (MTL), neural activity during veridical and illusory recognition was measured with the use of functional MRI (fMRI). Twelve healthy young adults watched a videotape segment in which two speakers alternatively presented lists of associated words, and then the subjects performed a recognition test including words presented in the study lists (True items), new words closely related to studied words (False items), and new unrelated words (New items). The main finding was a dissociation between two MTL regions: whereas the hippocampus was similarly activated for True and False items, suggesting the recovery of semantic information, the parahippocampal gyrus was more activated for True than for False items, suggesting the recovery of perceptual information. The study also yielded a dissociation between two prefrontal cortex (PFC) regions: whereas bilateral dorsolateral PFC was more activated for True and False items than for New items, possibly reflecting monitoring of retrieved information, left ventrolateral PFC was more activated for New than for True and False items, possibly reflecting semantic processing. Precuneus and lateral parietal regions were more activated for True and False than for New items. Orbitofrontal cortex and cerebellar regions were more activated for False than for True items. In conclusion, the results suggest that activity in anterior MTL regions does not distinguish True from False, whereas activity in posterior MTL regions does.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowing how motile bacteria move near and along a solid surface is crucial to understanding such diverse phenomena as the migration of infectious bacteria along a catheter, biofilm growth, and the movement of bacteria through the pore spaces of saturated soil, a critical step in the in situ bioremediation of contaminated aquifers. In this study, a tracking microscope is used to record the three-dimensional motion of Escherichia coli near a planar glass surface. Data from the tracking microscope are analyzed to quantify the effects of bacteria-surface interactions on the swimming behavior of bacteria. The speed of cells approaching the surface is found to decrease in agreement with the mathematical model of Ramia et al. [Ramia, M., Tullock, D. L. & Phan-Tien, N. (1993) Biophys J. 65,755-778], which represents the bacteria as spheres with a single polar flagellum rotating at a constant rate. The tendency of cells to swim adjacent to the surface is shown in computer-generated reproductions of cell traces. The attractive interaction potential between the cells and the solid surface is offered as one of several possible explanations for this tendency.