2 resultados para Operation Desert Shield, 1990-1991.
em National Center for Biotechnology Information - NCBI
Resumo:
A chronic debilitating parasitic infection, viscerotropic leishmaniasis (VTL), has been described in Operation Desert Storm veterans. Diagnosis of this disease, caused by Leishmania tropica, has been difficult due to low or absent specific immune responses in traditional assays. We report the cloning and characterization of two genomic fragments encoding portions of a single 210-kDa L. tropica protein useful for the diagnosis of VTL in U.S. military personnel. The recombinant proteins encoded by these fragments, recombinant (r) Lt-1 and rLt-2, contain a 33-amino acid repeat that reacts with sera from Desert Storm VTL patients and with sera from L. tropica-infected patients with cutaneous leishmaniasis. Antibody reactivities to rLt-1 indicated a bias toward IgG2 in VTL patient sera. Peripheral blood mononuclear cells from VTL patients produced interferon gamma, but not interleukin 4 or 10, in response to rLt-1. No cytokine production was observed in response to parasite lysate. The results indicate that specific leishmanial antigens may be used to detect immune responses in VTL patients with chronic infections.
Resumo:
Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved.