54 resultados para Oocyte maturation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CKII (formerly known as casein kinase II) is a ubiquitously expressed enzyme that plays an important role in regulating cell growth and differentiation. The β subunit of CKII (CKIIβ) is not catalytic but forms heterotetramers with the catalytic subunit α to generate an α2β2 holoenzyme. In Xenopus oocytes, CKIIβ also associates with another serine/threonine kinase, Mos. As a key regulator of meiosis, Mos is necessary and sufficient to initiate oocyte maturation. We have previously shown that the binding of CKIIβ to Mos represses Mos-mediated mitogen-activated protein kinase (MAPK) activation and that the ectopic expression of CKIIβ inhibits progesterone-induced Xenopus oocyte maturation. We have now used an antisense oligonucleotide technique to reduce the endogenous CKIIβ protein level in Xenopus oocytes, and we find that oocytes with a reduced content of CKIIβ are more sensitive to low doses of progesterone and show accelerated MAPK activation and germinal vesicle breakdown. Furthermore, ectopic expression of a Mos-binding fragment of CKIIβ suppressed the effect of antisense oligonucleotide. These results suggest that the endogenous CKIIβ normally sets a threshold level for Mos protein, which must be exceeded for Mos to activate the MAPK signaling pathway and induce oocyte maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR. However, although oocytes matured by injection of recombinant cdc2/cyclin B translate normal levels of XFGFR protein, c-mos depletion reduces the level of XFGFR protein induced by cdc2/cyclin B injection. In oocytes blocked for cdc2 activity, injection of mos RNA induced low levels of XFGFR protein, independent of MAPK activity. Through the use of injected reporter RNAs, we show that the XFGFR 3′ untranslated region inhibitory element is completely derepressed by cdc2 alone. In addition, we identified a new inhibitory element through which both mos and cdc2 activate translation. We found that cdc2 derepresses translation in the absence of polyadenylation, whereas mos requires poly(A) extension to activate XFGFR translation. Our results demonstrate that mos and cdc2, in addition to functioning as key regulators of the meiotic cell cycle, cooperate in the translational activation of a specific maternal mRNA during oocyte maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organization of the endoplasmic reticulum (ER) in the cortex of Xenopus oocytes was investigated during maturation and activation using a green fluorescent protein chimera, immunofluorescence, and electron microscopy. Dense clusters of ER developed on the vegetal side (the side opposite the meiotic spindle) during maturation. Small clusters appeared transiently at the time of nuclear envelope breakdown, disappeared at the time of first polar body formation, and then reappeared as larger clusters in mature eggs. The appearance of the large ER clusters was correlated with an increase in releaseability of Ca2+ by IP3. The clusters dispersed during the Ca2+ wave at activation. Possible relationships of ER structure and Ca2+ regulation are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) is selectively activated by injecting either mos or MAPK kinase (mek) RNA into immature mouse oocytes maintained in the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). IBMX arrests oocyte maturation, but Mos (or MEK) overexpression overrides this block. Under these conditions, meiosis I is significantly prolonged, and MAPK becomes fully activated in the absence of p34cdc2 kinase or maturation-promoting factor. In these oocytes, large openings form in the germinal vesicle adjacent to condensing chromatin, and microtubule arrays, which stain for both MAPK and centrosomal proteins, nucleate from these regions. Maturation-promoting factor activation occurs later, concomitant with germinal vesicle breakdown, the contraction of the microtubule arrays into a precursor of the spindle, and the redistribution of the centrosomal proteins into the newly forming spindle poles. These studies define important new functions for the Mos/MAPK cascade in mouse oocyte maturation and, under these conditions, reveal novel detail of the early stages of oocyte meiosis I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficient activation of p90rsk by MAP kinase requires their interaction through a docking site located at the C-terminal end of p90rsk. The MAP kinase p42mpk1 can associate with p90rsk in G2-arrested but not in mature Xenopus oocytes. In contrast, an N-terminally truncated p90rsk mutant named D2 constitutively interacts with p42mpk1. In this report we show that expression of D2 inhibits Xenopus oocyte maturation. The inhibition requires the p42mpk1 docking site. D2 expression uncouples the activation of p42mpk1 and p34cdc2/cyclin B in response to progesterone but does not prevent signaling through p90rsk. Instead, D2 interferes with a p42mpk1-triggered pathway, which regulates the phosphorylation and activation of Plx1, a potential activator of the Cdc25 phosphatase. This new pathway that links the activation of p42mpk1 and Plx1 during oocyte maturation is independent of p34cdc2/cyclin B activity but requires protein synthesis. Using D2, we also provide evidence that the sustained activation of p42mpk1 can trigger nuclear migration in oocytes. Our results indicate that D2 is a useful tool to study MAP kinase function(s) during oocyte maturation. Truncated substrates such as D2, which constitutively interact with MAP kinases, may also be helpful to study signal transduction by MAP kinases in other cellular processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The small G protein K-Ras2A is rapidly induced by aldosterone in A6 epithelia. In these Xenopus sodium reabsorbing cells, aldosterone rapidly activates preexisting epithelial Na+ channels (XENaC) via a transcriptionally mediated mechanism. In the Xenopus oocytes expression system, we tested whether the K-Ras2A pathway impacts on XENaC activity by expressing XENaC alone or together with XK-Ras2A rendered constitutively active (XK-Ras2AG12V). As a second control, XENaC-expressing oocytes were treated with progesterone, a sex steroid that induces maturation of the oocytes similarly to activated Ras. Progesterone or XK-Ras2AG12V led to oocyte maturation characterized by a decrease in surface area and endogenous Na+ pump function. In both conditions, the surface expression of exogenous XENaC′s was also decreased; however, in comparison with progesterone-treated oocytes, XK-ras2AG12V-coinjected oocytes expressed a fivefold higher XENaC-mediated macroscopic Na+ current that was as high as that of control oocytes. Thus, the Na+ current per surface-expressed XENaC was increased by XK-Ras2AG12V. The chemical driving force for Na+ influx was not changed, suggesting that XK-Ras2AG12V increased the mean activity of XENaCs at the oocyte surface. These observations raise the possibility that XK-Ras2A, which is the first regulatory protein known to be transcriptionally induced by aldosterone, could play a role in the control of XENaC function in aldosterone target cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xenopus oocyte maturation requires the phosphorylation and activation of p42 mitogen-activated protein kinase (MAPK). Likewise, the dephosphorylation and inactivation of p42 MAPK are critical for the progression of fertilized eggs out of meiosis and through the first mitotic cell cycle. Whereas the kinase responsible for p42 MAPK activation is well characterized, little is known concerning the phosphatases that inactivate p42 MAPK. We designed a microinjection-based assay to examine the mechanism of p42 MAPK dephosphorylation in intact oocytes. We found that p42 MAPK inactivation is mediated by at least two distinct phosphatases, an unidentified tyrosine phosphatase and a protein phosphatase 2A–like threonine phosphatase. The rates of tyrosine and threonine dephosphorylation were high and remained constant throughout meiosis, indicating that the dramatic changes in p42 MAPK activity seen during meiosis are primarily attributable to changes in MAPK kinase activity. The overall control of p42 MAPK dephosphorylation was shared among four partially rate-determining dephosphorylation reactions, with the initial tyrosine dephosphorylation of p42 MAPK being the most critical of the four. Our findings provide biochemical and kinetic insight into the physiological mechanism of p42 MAPK inactivation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)+ RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytoplasmic polyadenylylation is an essential process that controls the translation of maternal mRNAs during early development and depends on two cis elements in the 3′ untranslated region: the polyadenylylation hexanucleotide AAUAAA and a U-rich cytoplasmic polyadenylylation element (CPE). In searching for factors that could mediate cytoplasmic polyadenylylation of mouse c-mos mRNA, which encodes a serine/threonine kinase necessary for oocyte maturation, we have isolated the mouse homolog of CPEB, a protein that binds to the CPEs of a number of mRNAs in Xenopus oocytes and is required for their polyadenylylation. Mouse CPEB (mCPEB) is a 62-kDa protein that binds to the CPEs of c-mos mRNA. mCPEB mRNA is present in the ovary, testis, and kidney; within the ovary, this RNA is restricted to oocytes. mCPEB shows 80% overall identity with its Xenopus counterpart, with a higher homology in the carboxyl-terminal portion, which contains two RNA recognition motifs and a cysteine/histidine repeat. Proteins from arthropods and nematodes are also similar to this region, suggesting an ancient and widely used mechanism to control polyadenylylation and translation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Xenopus oocyte system mitogen treatment triggers the G2/M transition by transiently inhibiting the cAMP-dependent protein kinase (PKA); subsequently, other signal transduction pathways are activated, including the mitogen-activated protein kinase (MAPK) and polo-like kinase pathways. To study the interactions between these pathways, we have utilized a cell-free oocyte extract that carries out the signaling events of oocyte maturation after addition of the heat-stable inhibitor of PKA, PKI. PKI stimulated the synthesis of Mos and activation of both the MAPK pathway and the Plx1/Cdc25C/cyclin B-Cdc2 pathway. Activation of the MAPK pathway alone by glutathione S-transferase (GST)-Mos did not lead to activation of Plx1 or cyclin B-Cdc2. Inhibition of the MAPK pathway in the extract by the MEK1 inhibitor U0126 delayed, but did not prevent, activation of the Plx1 pathway, and inhibition of Mos synthesis by cycloheximide had a similar effect, suggesting that MAPK activation is the only relevant function of Mos. Immunodepletion of Plx1 completely inhibited activation of Cdc25C and cyclin B-Cdc2 by PKI, indicating that Plx1 is necessary for Cdc25C activation. In extracts containing fully activated Plx1 and Cdc25C, inhibition of cyclin B-Cdc2 by p21Cip1 had no significant effect on either the phosphorylation of Cdc25C or the activity of Plx1. These results demonstrate that maintenance of Plx1 and Cdc25C activity during mitosis does not require cyclin B-Cdc2 activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitogen-activated protein kinase (MAPK) cascade is a highly conserved series of three protein kinases implicated in diverse biological processes. Here we demonstrate that the cascade arrangement has unexpected consequences for the dynamics of MAPK signaling. We solved the rate equations for the cascade numerically and found that MAPK is predicted to behave like a highly cooperative enzyme, even though it was not assumed that any of the enzymes in the cascade were regulated cooperatively. Measurements of MAPK activation in Xenopus oocyte extracts confirmed this prediction. The stimulus/response curve of the MAPK was found to be as steep as that of a cooperative enzyme with a Hill coefficient of 4-5, well in excess of that of the classical allosteric protein hemoglobin. The shape of the MAPK stimulus/ response curve may make the cascade particularly appropriate for mediating processes like mitogenesis, cell fate induction, and oocyte maturation, where a cell switches from one discrete state to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explore the role of nonmuscle myosin II isoforms during mouse gametogenesis, fertilization, and early development, localization and microinjection studies were performed using monospecific antibodies to myosin IIA and IIB isotypes. Each myosin II antibody recognizes a 205-kDa protein in oocytes, but not mature sperm. Myosin IIA and IIB demonstrate differential expression during meiotic maturation and following fertilization: only the IIA isoform detects metaphase spindles or accumulates in the mitotic cleavage furrow. In the unfertilized oocyte, both myosin isoforms are polarized in the cortex directly overlying the metaphase-arrested second meiotic spindle. Cortical polarization is altered after spindle disassembly with Colcemid: the scattered meiotic chromosomes initiate myosin IIA and microfilament assemble in the vicinity of each chromosome mass. During sperm incorporation, both myosin II isotypes concentrate in the second polar body cleavage furrow and the sperm incorporation cone. In functional experiments, the microinjection of myosin IIA antibody disrupts meiotic maturation to metaphase II arrest, probably through depletion of spindle-associated myosin IIA protein and antibody binding to chromosome surfaces. Conversely, the microinjection of myosin IIB antibody blocks microfilament-directed chromosome scattering in Colcemid-treated mature oocytes, suggesting a role in mediating chromosome–cortical actomyosin interactions. Neither myosin II antibody, alone or coinjected, blocks second polar body formation, in vitro fertilization, or cytokinesis. Finally, microinjection of a nonphosphorylatable 20-kDa regulatory myosin light chain specifically blocks sperm incorporation cone disassembly and impedes cell cycle progression, suggesting that interference with myosin II phosphorylation influences fertilization. Thus, conventional myosins break cortical symmetry in oocytes by participating in eccentric meiotic spindle positioning, sperm incorporation cone dynamics, and cytokinesis. Although murine sperm do not express myosin II, different myosin II isotypes may have distinct roles during early embryonic development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified a novel β amyloid precursor protein (βAPP) mutation (V715M-βAPP770) that cosegregates with early-onset Alzheimer’s disease (AD) in a pedigree. Unlike other familial AD-linked βAPP mutations reported to date, overexpression of V715M-βAPP in human HEK293 cells and murine neurons reduces total Aβ production and increases the recovery of the physiologically secreted product, APPα. V715M-βAPP significantly reduces Aβ40 secretion without affecting Aβ42 production in HEK293 cells. However, a marked increase in N-terminally truncated Aβ ending at position 42 (x-42Aβ) is observed, whereas its counterpart x-40Aβ is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Aβ but may be caused by increased production of truncated forms of Aβ ending at the 42 position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During recent studies of ribonucleolytic “degradosome” complexes of Escherichia coli, we found that degradosomes contain certain RNAs as well as RNase E and other protein components. One of these RNAs is ssrA (for small stable RNA) RNA (also known as tm RNA or 10Sa RNA), which functions as both a tRNA and mRNA to tag the C-terminal ends of truncated proteins with a short peptide and target them for degradation. Here, we show that mature 363-nt ssrA RNA is generated by RNase E cleavage at the CCA-3′ terminus of a 457-nt ssrA RNA precursor and that interference with this cleavage in vivo leads to accumulation of the precursor and blockage of SsrA-mediated proteolysis. These results demonstrate that RNase E is required to produce mature ssrA RNA and for normal ssrA RNA peptide-tagging activity. Our findings indicate that RNase E, an enzyme already known to have a central role in RNA processing and decay in E. coli, also has the previously unsuspected ability to affect protein degradation through its role in maturation of the 3′ end of ssrA RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gene for the maturation protein of the single-stranded RNA coliphage MS2 is preceded by an untranslated leader of 130 nt, which folds into a cloverleaf, i.e., three stem–loop structures enclosed by a long distance interaction (LDI). This LDI prevents translation because its 3′ moiety contains the Shine–Dalgarno sequence of the maturation gene. Previously, several observations suggested that folding of the cloverleaf is kinetically delayed, providing a time window for ribosomes to access the RNA. Here we present direct evidence for this model. In vitro experiments show that ribosome binding to the maturation gene is faster than refolding of the denatured cloverleaf. This folding delay appears related to special properties of the leader sequence. We have replaced the three stem–loop structures by a single five nt loop. This change does not affect the equilibrium structure of the LDI. Nevertheless, in this construct, the folding delay has virtually disappeared, suggesting that now the RNA folds faster than ribosomes can bind. Perturbation of the cloverleaf by an insertion makes the maturation start permanently accessible. A pseudorevertant that evolved from an infectious clone carrying the insertion had overcome this defect. It showed a wild-type folding delay before closing down the maturation gene. This experiment reveals the biological significance of retarded cloverleaf formation.