11 resultados para Ontologies (Information retrieval)
em National Center for Biotechnology Information - NCBI
Resumo:
Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).
Resumo:
Objectives: Despite the growing use of online databases by clinicians, there has been very little research documenting how effectively they are used. This study assessed the ability of medical and nurse-practitioner students to answer clinical questions using an information retrieval system. It also attempted to identify the demographic, experience, cognitive, personality, search mechanics, and user-satisfaction factors associated with successful use of a retrieval system.
Resumo:
The basal forebrain complex, which includes the nucleus basalis magnocellularis (NBM), provides widespread cholinergic and γ-aminobutyric acid-containing projections throughout the brain, including the insular and pyriform cortices. A number of studies have implicated the cholinergic neurons in the mediation of learning and memory processes. However, the role of basal forebrain activity in information retrieval mechanisms is less known. The aim of the present study is to evaluate the effects of reversible inactivation of the NBM by tetrodotoxin (TTX, a voltage-sensitive sodium channel blocker) during the acquisition and retrieval of conditioned taste aversion (CTA) and to measure acetylcholine (ACh) release during TTX inactivation in the insular cortex, by means of the microdialysis technique in free-moving rats. Bilateral infusion of TTX in the NBM was performed 30 min before the presentation of gustative stimuli, in either the CTA acquisition trial or retrieval trial. At the same time, levels of extracellular ACh release were measured in the insular cortex. The behavioral results showed significant impairment in CTA acquisition when the TTX was infused in the NBM, whereas retrieval was not affected when the treatment was given during the test trial. Biochemical results showed that TTX infusion into the NBM produced a marked decrease in cortical ACh release as compared with the controls during consumption of saccharin in the acquisition trial. Depleted ACh levels were found during the test trial in all groups except in the group that received TTX during acquisition. These results suggest a cholinergic-dependent process during acquisition, but not during memory retrieval, and that NBM-mediated cholinergic cortical release may play an important role in early stages of learning, but not during recall of aversive memories.
Resumo:
Using an event-related functional MRI design, we explored the relative roles of dorsal and ventral prefrontal cortex (PFC) regions during specific components (Encoding, Delay, Response) of a working memory task under different memory-load conditions. In a group analysis, effects of increased memory load were observed only in dorsal PFC in the encoding period. Activity was lateralized to the right hemisphere in the high but not the low memory-load condition. Individual analyses revealed variability in activation patterns across subjects. Regression analyses indicated that one source of variability was subjects’ memory retrieval rate. It was observed that dorsal PFC plays a differentially greater role in information retrieval for slower subjects, possibly because of inefficient retrieval processes or a reduced quality of mnemonic representations. This study supports the idea that dorsal and ventral PFC play different roles in component processes of working memory.
Resumo:
VIDA is a new virus database that organizes open reading frames (ORFs) from partial and complete genomic sequences from animal viruses. Currently VIDA includes all sequences from GenBank for Herpesviridae, Coronaviridae and Arteriviridae. The ORFs are organized into homologous protein families, which are identified on the basis of sequence similarity relationships. Conserved sequence regions of potential functional importance are identified and can be retrieved as sequence alignments. We use a controlled taxonomical and functional classification for all the proteins and protein families in the database. When available, protein structures that are related to the families have also been included. The database is available for online search and sequence information retrieval at http://www.biochem.ucl.ac.uk/bsm/virus_database/VIDA.html.
Resumo:
Regional cerebral blood flow was measured with positron emission tomography during the performance of a verbal free recall task, a verbal paired associate task, and tasks that required the production of verbal responses either by speaking or writing. Examination of the differences in regional cerebral blood flow between these conditions demonstrated that the left ventrolateral frontal cortical area 45 is involved in the recall of verbal information from long-term memory, in addition to its contribution to speech. The act of writing activated a network of areas involving posterior parietal cortex and sensorimotor areas but not ventrolateral frontal cortex.
Resumo:
A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.
Resumo:
Neuronal models predict that retrieval of specific event information reactivates brain regions that were active during encoding of this information. Consistent with this prediction, this positron-emission tomography study showed that remembering that visual words had been paired with sounds at encoding activated some of the auditory brain regions that were engaged during encoding. After word-sound encoding, activation of auditory brain regions was also observed during visual word recognition when there was no demand to retrieve auditory information. Collectively, these observations suggest that information about the auditory components of multisensory event information is stored in auditory responsive cortex and reactivated at retrieval, in keeping with classical ideas about “redintegration,” that is, the power of part of an encoded stimulus complex to evoke the whole experience.
Resumo:
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov.
Resumo:
The Homeodomain Resource is an annotated collection of non-redundant protein sequences, three-dimensional structures and genomic information for the homeodomain protein family. Release 3.0 contains 795 full-length homeodomain-containing sequences, 32 experimentally-derived structures and 143 homeobox loci implicated in human genetic disorders. Entries are fully hyperlinked to facilitate easy retrieval of the original records from source databases. A simple search engine with a graphical user interface is provided to query the component databases and assemble customized data sets. A new feature for this release is the addition of DNA recognition sites for all human homeodomain proteins described in the literature. The Homeodomain Resource is freely available through the World Wide Web at http://genome.nhgri.nih.gov/homeodomain.
Resumo:
Remembering an event involves not only what happened, but also where and when it occurred. We measured regional cerebral blood flow by positron emission tomography during initial encoding and subsequent retrieval of item, location, and time information. Multivariate image analysis showed that left frontal brain regions were always activated during encoding, and right superior frontal regions were always activated at retrieval. Pairwise image subtraction analyses revealed information-specific activations at (i) encoding, item information in left hippocampal, location information in right parietal, and time information in left fusiform regions; and (ii) retrieval, item in right inferior frontal and temporal, location in left frontal, and time in anterior cingulate cortices. These results point to the existence of general encoding and retrieval networks of episodic memory whose operations are augmented by unique brain areas recruited for processing specific aspects of remembered events.