24 resultados para Onset Asynchronies

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified a novel β amyloid precursor protein (βAPP) mutation (V715M-βAPP770) that cosegregates with early-onset Alzheimer’s disease (AD) in a pedigree. Unlike other familial AD-linked βAPP mutations reported to date, overexpression of V715M-βAPP in human HEK293 cells and murine neurons reduces total Aβ production and increases the recovery of the physiologically secreted product, APPα. V715M-βAPP significantly reduces Aβ40 secretion without affecting Aβ42 production in HEK293 cells. However, a marked increase in N-terminally truncated Aβ ending at position 42 (x-42Aβ) is observed, whereas its counterpart x-40Aβ is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Aβ but may be caused by increased production of truncated forms of Aβ ending at the 42 position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of our study was to examine the neuroanatomical correlates of late-onset minor and major depression and to compare them with similar measures obtained from nondepressed controls. Our study groups were comprised of 18 patients with late-onset minor depression, 35 patients diagnosed with late-onset major depression, and 30 nondepressed controls. All subjects were scanned by using a 1.5-tesla MRI scanner. Absolute whole brain volume and normalized measures of prefrontal and temporal lobe volumes were obtained and used for comparison among groups. Our findings indicate that patients with minor depression present with specific neuroanatomical abnormalities that are comparable with the major depression group but significantly different from the controls. Normalized prefrontal lobe volumes show a significant linear trend with severity of depression, with volumes decreasing with illness severity. Whole brain volumes did not differ significantly among groups. These findings have broad implications for the biology of late-life depression and suggest that there may be common neurobiological substrates that underlie all clinically significant forms of late-onset mood disturbances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocyte nuclear factor 4α (HNF4α) plays a critical role in regulating the expression of many genes essential for normal functioning of liver, gut, kidney, and pancreatic islets. A nonsense mutation (Q268X) in exon 7 of the HNF4α gene is responsible for an autosomal dominant, early-onset form of non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young; gene named MODY1). Although this mutation is predicted to delete 187 C-terminal amino acids of the HNF4α protein the molecular mechanism by which it causes diabetes is unknown. To address this, we first studied the functional properties of the MODY1 mutant protein. We show that it has lost its transcriptional transactivation activity, fails to dimerize and bind DNA, implying that the MODY1 phenotype is because of a loss of HNF4α function. The effect of loss of function on HNF4α target gene expression was investigated further in embryonic stem cells, which are amenable to genetic manipulation and can be induced to form visceral endoderm. Because the visceral endoderm shares many properties with the liver and pancreatic β-cells, including expression of genes for glucose transport and metabolism, it offers an ideal system to investigate HNF4-dependent gene regulation in glucose homeostasis. By exploiting this system we have identified several genes encoding components of the glucose-dependent insulin secretion pathway whose expression is dependent upon HNF4α. These include glucose transporter 2, and the glycolytic enzymes aldolase B and glyceraldehyde-3-phosphate dehydrogenase, and liver pyruvate kinase. In addition we have found that expression of the fatty acid binding proteins and cellular retinol binding protein also are down-regulated in the absence of HNF4α. These data provide direct evidence that HNF4α is critical for regulating glucose transport and glycolysis and in doing so is crucial for maintaining glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer cell genomes contain alterations beyond known etiologic events, but their total number has been unknown at even the order of magnitude level. By sampling colorectal premalignant polyp and carcinoma cell genomes through use of the technique inter-(simple sequence repeat) PCR, we have found genomic alterations to be considerably more abundant than expected, with the mean number of genomic events per carcinoma cell totaling approximately 11,000. Colonic polyps early in the tumor progression pathway showed similar numbers of events. These results indicate that, as with certain hereditary cancer syndromes, genomic destabilization is an early step in sporadic tumor development. Together these results support the model of genomic instability being a cause rather than an effect of malignancy, facilitating vastly accelerated somatic cell evolution, with the observed orderly steps of the colon cancer progression pathway reflecting the consequences of natural selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by growth retardation, cerebellar ataxia, oculocutaneous telangiectasias, and a high incidence of lymphomas and leukemias. In addition, AT patients are sensitive to ionizing radiation. Atm-deficient mice recapitulate most of the AT phenotype. p21cip1/waf1 (p21 hereafter), an inhibitor of cyclin-dependent kinases, has been implicated in cellular senescence and response to γ-radiation-induced DNA damage. To study the role of p21 in ATM-mediated signal transduction pathways, we examined the combined effect of the genetic loss of atm and p21 on growth control, radiation sensitivity, and tumorigenesis. As might have been expected, our data provide evidence that p21 modifies the in vitro senescent response seen in AT fibroblasts. Further, it is a downstream effector of ATM-mediated growth control. In addition, however, we find that loss of p21 in the context of an atm-deficient mouse leads to a delay in thymic lymphomagenesis and an increase in acute radiation sensitivity in vivo (the latter principally because of effects on the gut epithelium). Modification of these two crucial aspects of the ATM phenotype can be related to an apparent increase in spontaneous apoptosis seen in tumor cells and in the irradiated intestinal epithelium of mice doubly null for atm and p21. Thus, loss of p21 seems to contribute to tumor suppression by a mechanism that operates via a sensitized apoptotic response. These results have implications for cancer therapy in general and AT patients in particular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cdc2–Cyclin B, the protein kinase that catalyzes the onset of mitosis, is subject to multiple forms of regulation. In the fission yeast Schizosaccharomyces pombe and most other species, a key mode of Cdc2–Cyclin B regulation is the inhibitory phosphorylation of Cdc2 on tyrosine-15. This phosphorylation is catalyzed by the protein kinases Wee1 and Mik1 and removed by the phosphatase Cdc25. These proteins are also regulated, a notable example being the inhibition of Wee1 by the protein kinase Nim1/Cdr1. The temperature-sensitive mutation cdc25–22 is synthetic lethal with nim1/cdr1 mutations, suggesting that a synthetic lethal genetic screen could be used to identify novel mitotic regulators. Here we describe that such a screen has identified cdr2+, a gene that has an important role in the mitotic control. Cdr2 is a 775 amino acid protein kinase that is closely related to Nim1 and mitotic control proteins in budding yeast. Deletion of cdr2 causes a G2-M delay that is more severe than that caused by nim1/cdr1 mutations. Genetic studies are consistent with a model in which Cdr2 negatively regulates Wee1. This model is supported by experiments showing that Cdr2 associates with the N-terminal regulatory domain of Wee1 in cell lysates and phosphorylates Wee1 in vitro. Thus, Cdr2 is a novel mitotic control protein that appears to regulate Wee1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandhoff disease is a neurodegenerative disorder resulting from the autosomal recessive inheritance of mutations in the HEXB gene, which encodes the β-subunit of β-hexosaminidase. GM2 ganglioside fails to be degraded and accumulates within lysosomes in cells of the periphery and the central nervous system (CNS). There are currently no therapies for the glycosphingolipid lysosomal storage diseases that involve CNS pathology, including the GM2 gangliosidoses. One strategy for treating this and related diseases is substrate deprivation. This would utilize an inhibitor of glycosphingolipid biosynthesis to balance synthesis with the impaired rate of catabolism, thus preventing storage. One such inhibitor is N-butyldeoxynojirimycin, which currently is in clinical trials for the potential treatment of type 1 Gaucher disease, a related disease that involves glycosphingolipid storage in peripheral tissues, but not in the CNS. In this study, we have evaluated whether this drug also could be applied to the treatment of diseases with CNS storage and pathology. We therefore have treated a mouse model of Sandhoff disease with the inhibitor N-butyldeoxynojirimycin. The treated mice have delayed symptom onset, reduced storage in the brain and peripheral tissues, and increased life expectancy. Substrate deprivation therefore offers a potentially general therapy for this family of lysosomal storage diseases, including those with CNS disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cDNA clone encoding a lipase (lipolytic acyl hydrolase) expressed at the onset of petal senescence has been isolated by screening a cDNA expression library prepared from carnation flowers (Dianthus caryophyllus). The cDNA contains the lipase consensus sequence, ITFAGHSLGA, and encodes a 447-amino acid polypeptide with a calculated molecular mass of 50.2 kDa that appears to be a cytosolic protein. Over-expression of the clone in Escherichia coli yielded a protein of the expected molecular weight that proved capable of deesterifying fatty acids from p-nitrophenylpalmitate, tri-linolein, soybean phospholipid, and Tween in both in vitro and in situ assays of enzyme activity. The abundance of the lipase mRNA increases just as carnation flowers begin to senesce, and expression of the gene is also induced by treatment with ethylene. Southern blot analyses of carnation genomic DNA have indicated that the lipase is a single copy gene. The lipase gene is also expressed in carnation leaves and is up-regulated when the leaves are treated with ethylene. Deesterification of membrane lipids and ensuing loss of membrane structural integrity are well established early events of plant senescence, and the expression pattern of this lipase gene together with the lipolytic activity of its cognate protein indicate that it plays a fundamentally central role in mediating the onset of senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the role of thyroid hormone receptors (TRs) α1 and β in the development of hearing, cochlear functions have been investigated in mice lacking TRα1 or TRβ. TRs are ligand-dependent transcription factors expressed in the developing organ of Corti, and loss of TRβ is known to impair hearing in mice and in humans. Here, TRα1-deficient (TRα1−/−) mice are shown to display a normal auditory-evoked brainstem response, indicating that only TRβ, and not TRα1, is essential for hearing. Because cochlear morphology was normal in TRβ−/− mice, we postulated that TRβ regulates functional rather than morphological development of the cochlea. At the onset of hearing, inner hair cells (IHCs) in wild-type mice express a fast-activating potassium conductance, IK,f, that transforms the immature IHC from a regenerative, spiking pacemaker to a high-frequency signal transmitter. Expression of IK,f was significantly retarded in TRβ−/− mice, whereas the development of the endocochlear potential and other cochlear functions, including mechanoelectrical transduction in hair cells, progressed normally. TRα1−/− mice expressed IK,f normally, in accord with their normal auditory-evoked brainstem response. These results establish that the physiological differentiation of IHCs depends on a TRβ-mediated pathway. When defective, this may contribute to deafness in congenital thyroid diseases.