14 resultados para One-act plays.

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When one nerve cell acts on another, its postsynaptic effect can vary greatly. In sensory systems, inputs from “drivers” can be differentiated from those of “modulators.” The driver can be identified as the transmitter of receptive field properties; the modulator can be identified as altering the probability of certain aspects of that transmission. Where receptive fields are not available, the distinction is more difficult and currently is undefined. We use the visual pathways, particularly the thalamic geniculate relay for which much relevant evidence is available, to explore ways in which drivers can be distinguished from modulators. The extent to which the distinction may apply first to other parts of the thalamus and then, possibly, to other parts of the brain is considered. We suggest the following distinctions: Cross-correlograms from driver inputs have sharper peaks than those from modulators; there are likely to be few drivers but many modulators for any one cell; and drivers are likely to act only through ionotropic receptors having a fast postsynaptic effect whereas modulators also are likely to activate metabotropic receptors having a slow and prolonged postsynaptic effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 μM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 μM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin β to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin α/β or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the isolation and functional analysis of the rfc3+ gene of Schizosaccharomyces pombe, which encodes the third subunit of replication factor C (RFC3). Because the rfc3+ gene was essential for growth, we isolated temperature-sensitive mutants. One of the mutants, rfc3-1, showed aberrant mitosis with fragmented or unevenly separated chromosomes at the restrictive temperature. In this mutant protein, arginine 216 was replaced by tryptophan. Pulsed-field gel electrophoresis suggested that rfc3-1 cells had defects in DNA replication. rfc3-1 cells were sensitive to hydroxyurea, methanesulfonate (MMS), and gamma and UV irradiation even at the permissive temperature, and the viabilities after these treatments were decreased. Using cells synchronized in early G2 by centrifugal elutriation, we found that the replication checkpoint triggered by hydroxyurea and the DNA damage checkpoint caused by MMS and gamma irradiation were impaired in rfc3-1 cells. Association of Rfc3 and Rad17 in vivo and a significant reduction of the phosphorylated form of Chk1 in rfc3-1 cells after treatments with MMS and gamma or UV irradiation suggested that the checkpoint signal emitted by Rfc3 is linked to the downstream checkpoint machinery via Rad17 and Chk1. From these results, we conclude that rfc3+ is required not only for DNA replication but also for replication and damage checkpoint controls, probably functioning as a checkpoint sensor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear LIM domain protein LMO2, a T cell oncoprotein, is essential for embryonic erythropoiesis. LIM-only proteins are presumed to act primarily through protein-protein interactions. We, and others, have identified a widely expressed protein, Ldb1, whose C-terminal 76-residues are sufficient to mediate interaction with LMO2. In murine erythroleukemia cells, the endogenous Lbd1 and LMO2 proteins exist in a stable complex, whose binding affinity appears greater than that between LMO2 and the bHLH transcription factor SCL. However, Ldb1, LMO2, and SCL/E12 can assemble as a multiprotein complex on a consensus SCL binding site. Like LMO2, the Ldb1 gene is expressed in fetal liver and erythroid cell lines. Forced expression of Ldb1 in G1ER proerythroblast cells inhibited cellular maturation, a finding compatible with the decrease in Ldb1 gene expression that normally occurs during erythroid differentiation. Overexpression of the LMO2 gene also inhibited erythroid differentiation. Our studies demonstrate a function for Ldb1 in hemopoietic cells and suggest that one role of the Ldb1/LMO2 complex is to maintain erythroid precursors in an immature state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yeast transcriptional repressor Tup1, tethered to DNA, represses to strikingly different degrees transcription elicited by members of two classes of activators. Repression in both cases is virtually eliminated by mutation of either member of the cyclin-kinase pair Srb10/11. In contrast, telomeric chromatin affects both classes of activators equally, and in neither case is that repression affected by mutation of Srb10/11. In vitro, Tup1 interacts with RNA polymerase II holoenzyme bearing Srb10 as well as with the separated Srb10. These and other findings indicate that at least one aspect of Tup1's action involves interaction with the RNA polymerase II holoenzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of related proteins in yeast Saccharomyces cerevisiae is known to have in vitro GTPase-activating protein activity on the Rab GTPases. However, their in vivo function remains obscure. One of them, Gyp1p, acts on Sec4p, Ypt1p, Ypt7p, and Ypt51p in vitro. Here, we present data to reveal its in vivo substrate and the role that it plays in the function of the Rab GTPase. Red fluorescent protein-tagged Gyp1p is concentrated on cytoplasmic punctate structures that largely colocalize with a cis-Golgi marker. Subcellular fractionation of a yeast lysate confirmed that Gyp1p is peripherally associated with membranes and that it cofractionates with Golgi markers. This localization suggests that Gyp1p may only act on Rab GTPases on the Golgi. A gyp1Δ strain displays a growth defect on synthetic medium at 37°C. Overexpression of Ypt1p, but not other Rab GTPases, strongly inhibits the growth of gyp1Δ cells. Conversely, a partial loss-of-function allele of YPT1, ypt1-2, can suppress the growth defect of gyp1Δ cells. Furthermore, deletion of GYP1 can partially suppress growth defects associated with mutants in subunits of transport protein particle complex, a complex that catalyzes nucleotide exchange on Ypt1p. These results establish that Gyp1p functions on the Golgi as a negative regulator of Ypt1p.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant growth and development are regulated by interactions between the environment and endogenous developmental programs. Of the various environmental factors controlling plant development, light plays an especially important role, in photosynthesis, in seasonal and diurnal time sensing, and as a cue for altering developmental pattern. Recently, several laboratories have devised a variety of genetic screens using Arabidopsis thaliana to dissect the signal transduction pathways of the various photoreceptor systems. Genetic analysis demonstrates that light responses are not simply endpoints of linear signal transduction pathways but are the result of the integration of information from a variety of photoreceptors through a complex network of interacting signaling components. These signaling components include the red/far-red light receptors, phytochromes, at least one blue light receptor, and negative regulatory genes (DET, COP, and FUS) that act downstream from the photoreceptors in the nucleus. In addition, a steroid hormone, brassinolide, also plays a role in light-regulated development and gene expression in Arabidopsis. These molecular and genetic data are allowing us to construct models of the mechanisms by which light controls development and gene expression in Arabidopsis. In the future, this knowledge can be used as a framework for understanding how all land plants respond to changes in their environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in the human phosphofructokinase muscle subunit gene (PFKM) are known to cause myopathy classified as glycogenosis type VII (Tarui disease). Previously described molecular defects include base substitutions altering encoded amino acids or resulting in abnormal splicing. We report a mutation resulting in phosphofructokinase deficiency in three patients from an Ashkenazi Jewish family. Using a reverse transcription PCR assay, PFKM subunit transcripts differing by length were detected in skeletal muscle tissue of all three affected subjects. In the longer transcript, an insertion of 252 nucleotides totally homologous to the structure of the 10th intron of the PFKM gene was found separating exon 10 from exon 11. In addition, two single base transitions were identified by direct sequencing: [exon 6; codon 95; CGA (Arg) to TGA (stop)] and [exon 7; codon 172; ACC (Thr) to ACT (Thr)] in either transcript. Single-stranded conformational polymorphism and restriction enzyme analyses confirmed the presence of these point substitutions in genomic DNA and strongly suggested homozygosity for the pathogenic allele. The nonsense mutation at codon 95 appeared solely responsible for the phenotype in these patients, further expanding genetic heterogeneity of Tarui disease. Transcripts with and without intron 10 arising from identical mutant alleles probably resulted from differential pre-mRNA processing and may represent a novel message from the PFKM gene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methylation of cytosine residues in DNA plays an important role in regulating gene expression during vertebrate embryonic development. Conversely, disruption of normal patterns of methylation is common in tumors and occurs early in progression of some human cancers. In vertebrates, it appears that the same DNA methyltransferase maintains preexisting patterns of methylation during DNA replication and carries out de novo methylation to create new methylation patterns. There are several indications that inherent signals in DNA structure can act in vivo to initiate or block de novo methylation in adjacent DNA regions. To identify sequences capable of enhancing de novo methylation of DNA in vitro, we designed a series of oligodeoxyribonucleotide substrates with substrate cytosine residues in different sequence contexts. We obtained evidence that some 5-methylcytosine residues in these single-stranded DNAs can stimulate de novo methylation of adjacent sites by murine DNA 5-cytosine methyltransferase as effectively as 5-methylcytosine residues in double-stranded DNA stimulate maintenance methylation. This suggests that double-stranded DNA may not be the primary natural substrate for de novo methylation and that looped single-stranded structures formed during the normal course of DNA replication or repair serve as "nucleation" sites for de novo methylation of adjacent DNA regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The suppressor of Hairy-wing [su(Hw)] protein exerts a polar effect on gene expression by repressing the function of transcriptional enhancers located distally from the promoter with respect to the location of su(Hw) binding sequences. The directionality of this effect suggests that the su(Hw) protein specifically interferes with the basic mechanism of enhancer action. Moreover, mutations in modifier of mdg4 [mod(mdg4)] result in the repression of expression of a gene when the su(Hw) protein is bound to sequences in the copy of this gene located in the homologous chromosome. This effect is dependent on the presence of the su(Hw) binding region from the gypsy retrotransposon in at least one of the chromosomes and is enhanced by the presence of additional gypsy sequences in the other homology. This phenomenon is inhibited by chromosomal rearrangements that disrupt pairing, suggesting that close apposition between the two copies of the affected gene is important for trans repression of transcription. These results indicate that, in the absence of mod-(mdg4) product, the su(Hw) protein present in one chromosome can act in trans and inactivate enhancers located in the other homolog.