50 resultados para Olfactory Epithelium

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mapping of high-dimensional olfactory stimuli onto the two-dimensional surface of the nasal sensory epithelium constitutes the first step in the neuronal encoding of olfactory input. We have used zebrafish as a model system to analyze the spatial distribution of odorant receptor molecules in the olfactory epithelium by quantitative in situ hybridization. To this end, we have cloned 10 very divergent zebrafish odorant receptor molecules by PCR. Individual genes are expressed in sparse olfactory receptor neurons. Analysis of the position of labeled cells in a simplified coordinate system revealed three concentric, albeit overlapping, expression domains for the four odorant receptors analyzed in detail. Such regionalized expression should result in a corresponding segregation of functional response properties. This might represent the first step of spatial encoding of olfactory input or be essential for the development of the olfactory system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian olfactory epithelium (OE) supports continual neurogenesis throughout life, suggesting that a neuronal stem cell exists in this system. In tissue culture, however, the capacity of the OE for neurogenesis ceases after a few days. In an attempt to identify conditions that support the survival of neuronal stem cells, a population of neuronal progenitors was isolated from embryonic mouse OE and cultured in defined serum-free medium. The vast majority of cells rapidly gave rise to neurons, which died shortly thereafter. However, when purified progenitors were co-cultured with cells derived from the stroma underlying the OE, a small subpopulation (0.07-0.1%) gave rise to proliferative colonies. A morphologically identifiable subset of these colonies generated new neurons as late as 7 days in vitro. Interestingly, development of these neuronal colonies was specifically inhibited when purified progenitors were plated onto stromal feeder cells in the presence of a large excess of differentiated OE neurons. These results indicate that a rare cell type, with the potential to undergo prolonged neurogenesis, can be isolated from mammalian OE and that stroma-derived factors are important in supporting neurogenesis by this cell. The data further suggest that differentiated neurons provide a signal that feeds back to inhibit production of new neurons by their own progenitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The olfactory system is remarkable in its capacity to discriminate a wide range of odorants through a series of transduction events initiated in olfactory receptor neurons. Each olfactory neuron is expected to express only a single odorant receptor gene that belongs to the G protein coupled receptor family. The ligand–receptor interaction, however, has not been clearly characterized. This study demonstrates the functional identification of olfactory receptor(s) for specific odorant(s) from single olfactory neurons by a combination of Ca2+-imaging and reverse transcription–coupled PCR analysis. First, a candidate odorant receptor was cloned from a single tissue-printed olfactory neuron that displayed odorant-induced Ca2+ increase. Next, recombinant adenovirus-mediated expression of the isolated receptor gene was established in the olfactory epithelium by using green fluorescent protein as a marker. The infected neurons elicited external Ca2+ entry when exposed to the odorant that originally was used to identify the receptor gene. Experiments performed to determine ligand specificity revealed that the odorant receptor recognized specific structural motifs within odorant molecules. The odorant receptor-mediated signal transduction appears to be reconstituted by this two-step approach: the receptor screening for given odorant(s) from single neurons and the functional expression of the receptor via recombinant adenovirus. The present approach should enable us to examine not only ligand specificity of an odorant receptor but also receptor specificity and diversity for a particular odorant of interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sensory transduction in olfactory neurons involves the activation of a cyclic nucleotide-gated (CNG) channel by cAMP. Previous studies identified a CNG channel α subunit (CNG2) and a β subunit (CNG5), which when heterologously expressed form a channel with properties similar but not identical to those of native olfactory neurons. We have cloned a new type of CNG channel β subunit (CNG4.3) from rat olfactory epithelium. CNG4.3 derives from the same gene as the rod photoreceptor β subunit (CNG4.1) but lacks the long, glutamic acid-rich domain found in the N terminus of CNG4.1. Northern blot and in situ hybridization revealed that CNG4.3 is expressed specifically in olfactory neurons. Expression of CNG4.3 in human embryonic kidney 293 cells did not lead to detectable currents. Coexpression of CNG4.3 with CNG2 induced a current with significantly increased sensitivity for cAMP whereas cGMP affinity was not altered. Additionally, CNG4.3 weakened the outward rectification of the current in the presence of extracellular Ca2+, decreased the relative permeability for Ca2+, and enhanced the sensitivity for l-cis diltiazem. Upon coexpression of CNG2, CNG4.3, and CNG5, a conductance with a cAMP sensitivity greater than that of either the CNG2/CNG4.3 or the CNG2/CNG5 channel and near that of native olfactory channel was observed. Our data suggest that CNG4.3 forms a subunit of the native olfactory CNG channel. The expression of various CNG4 isoforms in retina and olfactory epithelium indicates that the CNG4 subunit may be necessary for normal function of both photoreceptor and olfactory CNG channels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although odorants are known to activate olfactory receptor neurons through cAMP, the long-term effects of odorant detection are not known. Our recent findings indicate that there is also a delayed and sustained cAMP response, with kinetics sufficient to mediate long-term cellular responses. This cAMP response is mediated by cGMP through activation of adenylyl cyclase by protein kinase G (PKG). Therefore, we investigated the ability of odorants to regulate gene expression in rat olfactory epithelium. The cAMP-responsive binding protein (CREB) is a well-characterized transcription factor regulated by cAMP. We examined CREB activity in rat olfactory epithelium and olfactory receptor neurons (ORNs) after stimulation with odorants. Odorants increased levels of phosphorylated CREB in olfactory epithelium in vivo, and this increase was localized to ORNs in vitro. Incubation with 8-bromo-cGMP or sodium nitroprusside, a guanylyl cyclase activator, also increased phosphorylated CREB. In vitro, cAMP-dependent protein kinase phosphorylated CREB. In contrast, PKG failed to phosphorylate CREB directly in vitro. Our results demonstrate that the delayed odorant-induced cAMP signal activates CREB, which in turn may modulate gene expression in ORNs. In addition, cGMP indirectly affects CREB activation. This effect of cGMP on CREB activity through cAMP provides another mechanism for the modulation of CREB.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well established that signal transduction in sensory neurons of the rat olfactory epithelium involves a cAMP-signaling pathway. However, a small number of olfactory neurons specifically express cGMP-signaling components, namely a guanylyl cyclase (GC-D) and a cGMP-stimulated phosphodiesterase (PDE2). Here, we show that this subset of olfactory neurons expressing GC-D and PDE2 does also express the subunit of a cGMP-selective cyclic nucleotide-gated (CNG) channel that has been previously identified in cone photoreceptors. Further, components of the prototypical cAMP-signaling pathway could not be detected in this subpopulation of cells. These results imply that these neurons use an alternative signaling pathway, with cGMP as the intracellular messenger, and that, in these cells, the receptor current is initiated by the opening of cGMP-gated channels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Four members of the canine olfactory receptor gene family were characterized. The predicted proteins shared 40-64% identity with previously identified olfactory receptors. The four subfamilies identified in Southern hybridization experiments had as few as 2 and as many as 20 members. All four genes were expressed exclusively in olfactory epithelium. Expression of multiple members of the larger subfamilies was detected, suggesting that most if not all of the cross-hybridizing bands in genomic Southern blots represented actively transcribed olfactory receptor genes. Analysis of large DNA fragments using Southern blots of pulsed-field gels indicated that subfamily members were clustered together, and that two of the subfamilies were closely linked in the dog genome. Analysis of the four olfactory receptor gene subfamilies in 26 breeds of dog provided evidence that the number of genes per subfamily was stable in spite of differential selection on the basis of olfactory acuity in scent hounds, sight hounds, and toy breeds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In mammals, olfactory stimuli are detected by sensory neurons at two distinct sites: the olfactory epithelium (OE) of the nasal cavity and the neuroepithelium of the vomeronasal organ (VNO). While the OE can detect volatile chemicals released from numerous sources, the VNO appears to be specialized to detect pheromones that are emitted by other animals and that convey information of behavioral or physiological importance. The mechanisms underlying sensory transduction in the OE have been well studied and a number of components of the transduction cascade have been cloned. Here, we investigated sensory transduction in the VNO by asking whether VNO neurons express molecules that have been implicated in sensory transduction in the OE. Using in situ hybridization and Northern blot analyses, we found that most of the olfactory transduction components examined, including the guanine nucleotide binding protein alpha subunit (G-alpha-olf), adenylyl cyclase type III, and an olfactory cyclic nucleotide-gated (CNG) channel subunit (oCNC1), are not expressed by VNO sensory neurons. In contrast, VNO neurons do express a second olfactory CNG channel subunit (oCNC2). These results indicate that VNO sensory transduction is distinct from that in the OE but raise the possibility that, like OE sensory transduction, sensory transduction in the VNO might involve cyclic nucleotide-gated ion channels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine the extent to which hippocampal synapses are typical of those found in other cortical regions, we have carried out a quantitative analysis of olfactory cortical excitatory synapses, reconstructed from serial electron micrograph sections of mouse brain, and have compared these new observations with previously obtained data from hippocampus. Both superficial and deep layer I olfactory cortical synapses were studied. Although individual synapses in each of the areas—CA1 hippocampus, olfactory cortical layer Ia, olfactory cortical area Ib—might plausibly have been found in any of the other areas, the average characteristics of the three synapse populations are distinct. Olfactory cortical synapses in both layers are, on average, about 2.5 times larger than their hippocampal counterparts. The layer Ia olfactory cortical synapses have fewer synaptic vesicles than do the layer Ib synapses, but the absolute number of vesicles docked to the active zone in the layer Ia olfactory cortical synapses is about equal to the docked vesicle number in the smaller hippocampal synapses. As would be predicted from studies on hippocampus that relate paired-pulse facilitation to the number of docked vesicles, the synapses in layer 1a exhibit facilitation, whereas the ones in layer 1b do not. Although hippocampal synapses provide as a good model system for central synapses in general, we conclude that significant differences in the average structure of synapses from one cortical region to another exist, and this means that generalizations based on a single synapse type must be made with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) image-contrast to map odor-elicited olfactory responses at the laminar level in the rat olfactory bulb (OB) elicited by iso-amyl acetate (10−2 dilution of saturated vapor) with spatial and temporal resolutions of 220×220×1,000 μm and 36 s. The laminar structure of the OB was clearly depicted by high-resolution in vivo anatomical MRI with spatial resolution of 110×110×1,000 μm. In repeated BOLD fMRI measurements, highly significant (P < 0.001) foci were located in the outer layers of both OBs. The occurrence of focal OB activity within a domain at the level of individual glomeruli or groups of glomeruli was corroborated on an intra- and inter-animal basis under anesthetized conditions with this noninvasive method. The dynamic studies demonstrated that the odor-elicited BOLD activations were highly reproducible on a time scale of minutes, whereas over tens of minutes the activations sometimes varied slowly. We found large BOLD signal (ΔS/S = 10–30%) arising from the olfactory nerve layer, which is devoid of synapses and composed of unmyelinated fibers and glial cells. Our results support previous studies with other methods showing that odors elicit activity within glomerular layer domains in the mammalian OB, and extend the analysis to shorter time periods at the level of individual glomeruli or groups of glomeruli. With further improvement, BOLD fMRI should be ideal for systematic analysis of the functional significance of individual glomeruli in olfactory information encoding and of spatiotemporal processing within the olfactory system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several basic olfactory tasks must be solved by highly olfactory animals, including background suppression, multiple object separation, mixture separation, and source identification. The large number N of classes of olfactory receptor cells—hundreds or thousands—permits the use of computational strategies and algorithms that would not be effective in a stimulus space of low dimension. A model of the patterns of olfactory receptor responses, based on the broad distribution of olfactory thresholds, is constructed. Representing one odor from the viewpoint of another then allows a common description of the most important basic problems and shows how to solve them when N is large. One possible biological implementation of these algorithms uses action potential timing and adaptation as the “hardware” features that are responsible for effective neural computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A visual pigment-like protein, referred to as peropsin, has been identified by large-scale sequencing of cDNAs derived from human ocular tissues. The corresponding mRNA was found only in the eye, where it is localized to the retinal pigment epithelium (RPE). Peropsin immunoreactivity, visualized by light and electron microscopy, localizes the protein to the apical face of the RPE, and most prominently to the microvilli that surround the photoreceptor outer segments. These observations suggest that peropsin may play a role in RPE physiology either by detecting light directly or by monitoring the concentration of retinoids or other photoreceptor-derived compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive G protein-coupled receptor families in both the main and accessory olfactory systems have been implicated in axonal targeting, sensory function, and cell survival. Although sensory function seems to be mediated by G proteins, axonal guidance and cell survival may be G protein-independent processes. In the accessory olfactory system, the Go-containing neurons in the basal vomeronasal organ (VNO) project to the posterior accessory olfactory bulb (AOB), whereas more apically located VNO neurons contain Gi2 and project to the anterior AOB. Herein, we investigate the organization of the accessory olfactory system in mice with a targeted deletion in the Goα gene. The accessory olfactory system seems normal at birth; however, postnatally, the number of Go-receptor-containing VNO neurons decreases by half, and apoptotic neurons are detected. The axons of VNO neurons remain restricted to the posterior AOB. The posterior AOB is reduced in size but contains a synaptophysin-positive layer with the normal number of glomeruli. The posterior AOB has reduced mitral cell c-Fos immunoreactivity, consistent with decreased sensory activation of Go protein-coupled VNO receptor neurons. Thus, in the accessory olfactory system, receptor-coupled G proteins are required for cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native cylic nucleotide-gated (CNG) channels are composed of α and β subunits. Olfactory CNG channels were expressed from rat cDNA clones in Xenopus oocytes and studied in inside-out patches. Using tandem dimers composed of linked subunits, we investigated the stoichiometry and arrangement of the α and β subunits. Dimers contained three subunit types: αwt, βwt, and αm. The αm subunit lacks an amino-terminal domain that greatly influences gating, decreasing the apparent affinity of the channel for ligand by 9-fold, making it a reporter for inclusion in the tetramer. Homomeric channels from injection of αwtαwt dimers and from αwt monomers were indistinguishable. Channels from injection of αwtαm dimers had apparent affinities 3-fold lower than αwt homomultimers, suggesting a channel with two αwt and two αm subunits. Channels from coinjection of αwtαwt and ββ dimers were indistinguishable from those composed of α and β monomers and shared all of the characteristics of the α+β phenotype of heteromeric channels. Coinjection of αwtαm and ββ dimers yielded channels also of the α+β phenotype but with an apparent affinity 3-fold lower, indicating the presence of αm in the tetramer and that α+β channels have adjacent α-subunits. To distinguish between an α-α-α-β and an α-α-β-β arrangement, we compared apparent affinities for channels from coinjection of αwtαwt and βαwt or αwtαwt and βαm dimers. These channels were indistinguishable. To further argue against an α-α-α-β arrangement, we quantitatively compared dose–response data for channels from coinjection of αwtαm and ββ dimers to those from α and β monomers. Taken together, our results are most consistent with an α-α-β-β arrangement for the heteromeric olfactory CNG channel.