2 resultados para Oceanic variability
em National Center for Biotechnology Information - NCBI
Resumo:
We show, from recent data obtained at specimen North Pacific stations, that the fossil fuel CO2 signal is strongly present in the upper 400 m, and that we may consider areal extrapolations from geochemical surveys to determine the magnitude of ocean fossil fuel CO2 uptake. The debate surrounding this topic is illustrated by contrasting reports which suggest, based upon atmospheric observations and models, that the oceanic CO2 sink is small at these latitudes; or that the oceanic CO2 sink, based upon oceanic data and models, is large. The difference between these two estimates is at least a factor of two. There are contradictions arising from estimates based on surface partial pressures of CO2 alone, where the signal sought is small compared with regional and seasonal variability; and estimates of the accumulated subsurface burden, which correlates well other oceanic tracers. Ocean surface waters today contain about 45 μmol⋅kg−1 excess CO2 compared with those of the preindustrial era, and the signal is rising rapidly. What limits should we place on such calculations? The answer lies in the scientific questions to be asked. Recovery of the fossil fuel CO2 contamination signal from analysis of ocean water masses is robust enough to permit reasonable budget estimates. However, because we do not have sufficient data from the preindustrial ocean, the estimation of the required Redfield oxidation ratio in the upper several hundred meters is already blurred by the very fossil fuel CO2 signal we seek to resolve.
Resumo:
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.