6 resultados para Oblique Gaze,
em National Center for Biotechnology Information - NCBI
Resumo:
The electronic excitations of naphthalene and a family of bridged naphthalene dimers are calculated and analyzed by using the Collective Electronic Oscillator method combined with the oblique Lanczos algorithm. All experimentally observed trends in absorption profiles and radiative lifetimes are reproduced. Each electronic excitation is linked to the corresponding real-space transition density matrix, which represents the motions of electrons and holes created in the molecule by photon absorption. Two-dimensional plots of these matrices help visualize the degree of exciton localization and explain the dependence of the electronic interaction between chromophores on their separation.
Resumo:
The superficial gray layer of the superior colliculus contains a map that represents the visual field, whereas the underlying intermediate gray layer contains a vector map of the saccades that shift the direction of gaze. These two maps are aligned so that a particular region of the visual field is represented directly above the neurons that orient the highest acuity area of the retina toward that region. Although it has been proposed that the transmission of information from the visuosensory to the motor map plays an important role in the generation of visually guided saccades, experiments have failed to demonstrate any functional linkage between the two layers. We examined synaptic transmission between these layers in vitro by stimulating the superficial layer while using whole-cell patch-clamp methods to measure the responses of intermediate layer neurons. Stimulation of superficial layer neurons evoked excitatory postsynaptic currents in premotor cells. This synaptic input was columnar in organization, indicating that the connections between the layers link corresponding regions of the visuosensory and motor maps. Excitatory postsynaptic currents were large enough to evoke action potentials and often occurred in clusters similar in duration to the bursts of action potentials that premotor cells use to command saccades. Our results indicate the presence of functional connections between the superficial and intermediate layers and show that such connections could play a significant role in the generation of visually guided saccades.
Resumo:
An experimental study is described of convection driven by thermal buoyancy in the annular gap between two corotating coaxial cylinders, heated from the outside and cooled from the inside. Steady convection patterns of the hexaroll and of the knot type are observed in the case of high Prandtl number fluids, for which the Coriolis force is sufficiently small. Oblique rolls and phase turbulence in the form of irregular patterns of convection can also be observed in wide regions of the parameter space.
Resumo:
Structural studies of viral membrane fusion proteins suggest that a “trimer-of-hairpins” motif plays a critical role in the membrane fusion process of many enveloped viruses. In this motif, a coiled coil (formed by homotrimeric association of the N-terminal regions of the protein) is surrounded by three C-terminal regions that pack against the coiled coil in an oblique antiparallel manner. The resulting trimer-of-hairpins structure serves to bring the viral and cellular membranes together for fusion. learncoil-vmf, a computational program developed to recognize coiled coil-like regions that form the trimer-of-hairpins motif, predicts these regions in the membrane fusion protein of the Visna virus. Peptides corresponding to the computationally identified sequences were synthesized, and the soluble core of the Visna membrane fusion protein was reconstituted in solution. Its crystal structure at 1.5-Å resolution demonstrates that a trimer-of-hairpins structure is formed. Remarkably, despite less than 23% sequence identity, the ectodomains in Visna and HIV-1 envelope glycoproteins show detailed structural conservation, especially within the area of a hydrophobic pocket in the central coiled coil currently being targeted for the development of new anti-HIV drugs.
Resumo:
I will discuss several issues related to the acceleration, collimation, and propagation of jets from active galactic nuclei. Hydromagnetic stresses provide the best bet for both accelerating relativistic flows and providing a certain amount of initial collimation. However, there are limits to how much "self-collimation" can be achieved without the help of an external pressurized medium. Moreover, existing models, which postulate highly organized poloidal flux near the base of the flow, are probably unrealistic. Instead, a large fraction of the magnetic energy may reside in highly disorganized "chaotic" fields. Such a field can also accelerate the flow to relativistic speeds, in some cases with greater efficiency than highly organized fields, but at the expense of self-collimation. The observational interpretation of jet physics is still hampered by a dearth of unambiguous diagnostics. Propagating disturbances in flows, such as the oblique shocks that may constitute the kiloparsec-scale "knots" in the M87 jet, may provide a wide range of untapped diagnostics for jet properties.
Resumo:
It is a familiar experience that we tend to close our eyes or divert our gaze when concentrating attention on cognitively demanding tasks. We report on the brain activity correlates of directing attention away from potentially competing visual processing and toward processing in another sensory modality. Results are reported from a series of positron-emission tomography studies of the human brain engaged in somatosensory tasks, in both "eyes open" and "eyes closed" conditions. During these tasks, there was a significant decrease in the regional cerebral blood flow in the visual cortex, which occurred irrespective of whether subjects had to close their eyes or were instructed to keep their eyes open. These task-related deactivations of the association areas belonging to the nonrelevant sensory modality were interpreted as being due to decreased metabolic activity. Previous research has clearly demonstrated selective activation of cortical regions involved in attention-demanding modality-specific tasks; however, the other side of this story appears to be one of selective deactivation of unattended areas.