6 resultados para OXIDATIVE ADDITION

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the important mechanisms of immunosuppression in the tumor-bearing status has been attributed to the down-modulation of the CD3 ζ chain and its associated signaling molecules in T cells. Thus, the mechanism of the disappearance of CD3ζ was investigated in tumor-bearing mice (TBM). The decrease of CD3ζ was observed both in the cell lysate and intact cells. Direct interaction of T cells with macrophages from TBM (TBM-macrophages) induced the decrease of CD3ζ, and depletion of macrophages rapidly restored the CD3ζ expression. We found that treatment of such macrophages with N-acetylcysteine, known as antioxidant compound, prevented the decrease of CD3ζ. Consistent with this result, the addition of oxidative reagents such as hydrogen peroxide and diamide induced the decrease of CD3ζ expression in T cells. Consequently, the loss of CD3ζ resulted in suppression of the antigen-specific T-cell response. These results demonstrate that oxidative stress by macrophages in tumor-bearing status induces abnormality of the T-cell receptor complex by cell interactions with T cells. Therefore, our findings suggest that oxidative stress contributes to the regulation of the expression and function of the T-cell receptor complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron regulatory protein-1 (IRP-1), a central cytoplasmic regulator of cellular iron metabolism, is rapidly activated by oxidative stress to bind to mRNA iron-responsive elements. We have reconstituted the response of IRP-1 to extracellular H2O2 in a system derived from murine B6 fibroblasts permeabilized with streptolysin-O. This procedure allows separation of the cytosol from the remainder of the cells (cell pellet). IRP-1 in the cytosolic fraction fails to be directly activated by addition of H2O2. IRP-1 activation requires the presence of a nonsoluble, possibly membrane-associated component in the cell pellet. The streptolysin-O-based in vitro system faithfully recapitulates characteristic hallmarks of IRP-1 activation by H2O2 in intact cells. We show that the H2O2-mediated activation of IRP-1 is temperature dependent and sensitive to treatment with calf intestinal alkaline phosphatase (CIAP). Although IRP-1 activation is unaffected by addition of excess ATP or GTP to this in vitro system, it is negatively affected by the nonhydrolyzable nucleotide analogs adenylyl-imidodiphosphate and guanylyl-imidophosphate and completely blocked by ATP-γS and GTP-γS. The in vitro reconstitution of this oxidative stress-induced pathway has opened a different avenue for the biochemical dissection of the regulation of mammalian iron metabolism by oxidative stress. Our data show that H2O2 must be sensed to stimulate a pathway to activate IRP-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nrf2, a member of the “cap ‘n collar” group of transcription factors, is important for protecting cells against oxidative damage. We investigated its role in the detoxification of acetaminophen [N-acetyl-p-aminophenol (APAP)]-induced hepatotoxicity. When Nrf2 knockout (Nrf2−/−) and wild-type mice were given APAP by i.p. injection, the Nrf2−/− mice were highly susceptible to APAP treatment. With doses of APAP that were tolerated by wild-type mice, the Nrf2−/− mice died of liver failure. When hepatic glutathione was depleted after a dose of 400 mg/kg of APAP, the wild-type mice were able to compensate and regain the normal glutathione level. In contrast, the glutathione level in the Nrf2−/− mice was not compensated and remained low. This was because of the decrease in the gene expression of gcsH and gcsL as well as gss in the livers of the Nrf2−/− mice. In addition, the expression of ugt1a6 and gstpi that detoxify APAP by conjugation was also decreased. This increased susceptibility of the Nrf2−/− mice to APAP, because of an impaired capacity to replenish their glutathione stores, compounded with a decreased detoxification capability, highlights the importance of Nrf2 in the regulation of glutathione synthesis and cellular detoxification processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants that have been wounded by insects or other herbivores may be more susceptible to infection by adventitious microbes. Wound-induced signal molecules, which serve to induce responses in the plant that retard further feeding, might also act to prepare a plant for possible pathogen attack. We have examined the effect of a wound-generated systemic messenger (systemin) on a pathogen-stimulated defense-response marker, the oxidative burst. We observed that neither systemin nor its inactive analog (A-17) was able to directly induce H2O2 biosynthesis in suspension-cultured tomato (Lycopersicon esculentum L.) cells, regardless of the duration of exposure of the cells to the two peptides. Similarly, neither systemin nor A-17 was capable of modifying an oligogalacturonide-elicited oxidative burst, as long as elicitor addition occurred within minutes of treatment with systemin or A-17. In contrast, preexposure of the cell cultures to systemin (but not to A-17) led to a time-dependent enhancement of the oligogalacturonide-elicited oxidative burst. By 12 h of exposure, the H2O2 biosynthetic capacity of systemin-treated cells exceeded that of the control cells by a factor of 16 ± 2. A similar up-regulation by systemin of a mechanically stimulated oxidative burst was also observed. Because the systemin-induced augmentation in oxidant synthesis is quantitatively prevented by coincubation with 2 μm cycloheximide, and because the oxidative burst of oligogalacturonic acid-elicited control cells (no systemin exposure) is unaffected by preincubation with cycloheximide, we conclude that systemin enhancement of the tomato-cell oxidative burst requires protein synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an essential nutrient and a potential toxin, iron poses an exquisite regulatory problem in biology and medicine. At the cellular level, the basic molecular framework for the regulation of iron uptake, storage, and utilization has been defined. Two cytoplasmic RNA-binding proteins, iron-regulatory protein-1 (IRP-1) and IRP-2, respond to changes in cellular iron availability and coordinate the expression of mRNAs that harbor IRP-binding sites, iron-responsive elements (IREs). Nitric oxide (NO) and oxidative stress in the form of H2O2 also signal to IRPs and thereby influence cellular iron metabolism. The recent discovery of two IRE-regulated mRNAs encoding enzymes of the mitochondrial citric acid cycle may represent the beginnings of elucidating regulatory coupling between iron and energy metabolism. In addition to providing insights into the regulation of iron metabolism and its connections with other cellular pathways, the IRE/IRP system has emerged as a prime example for the understanding of translational regulation and mRNA stability control. Finally, IRP-1 has highlighted an unexpected role for iron sulfur clusters as post-translational regulatory switches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.