18 resultados para OVERHAUSER EFFECT EXPERIMENTS

em National Center for Biotechnology Information - NCBI


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Familial amyloidosis–Finnish type (FAF) results from a single mutation at residue 187 (D187N or D187Y) within domain 2 of the actin-regulating protein gelsolin. The mutation somehow allows a masked cleavage site to be exposed, leading to the first step in the formation of an amyloidogenic fragment. We have performed NMR experiments investigating structural and dynamic changes between wild-type (WT) and D187N gelsolin domain 2 (D2). On mutation, no significant structural or dynamic changes occur at or near the cleavage site. Areas in conformational exchange are observed between β-strand 4 and α-helix 1 and within the loop region following β-strand 5. Chemical shift differences are noted along the face of α-helix 1 that packs onto the β-sheet, suggesting an altered conformation. Conformational changes within these areas can have an effect on actin binding and may explain why D187N gelsolin is inactive. {1H-15N} nuclear Overhauser effect and chemical shift data suggest that the C-terminal tail of D187N gelsolin D2 is less structured than WT by up to six residues. In the crystal structure of equine gelsolin, the C-terminal tail of D2 lies across a large cleft between domains 1 and 2 where the masked cleavage site sits. We propose that the D187N mutation destabilizes the C-terminal tail of D2 resulting in a more exposed cleavage site leading to the first proteolysis step in the formation of the amyloidogenic fragment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 2H,13C,15N-labeled, 148-residue integral membrane protein OmpX from Escherichia coli was reconstituted with dihexanoyl phosphatidylcholine (DHPC) in mixed micelles of molecular mass of about 60 kDa. Transverse relaxation-optimized spectroscopy (TROSY)-type triple resonance NMR experiments and TROSY-type nuclear Overhauser enhancement spectra were recorded in 2 mM aqueous solutions of these mixed micelles at pH 6.8 and 30°C. Complete sequence-specific NMR assignments for the polypeptide backbone thus have been obtained. The 13C chemical shifts and the nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution and in the collection of an input of conformational constraints for the computation of the global fold of the protein. The same type of polypeptide backbone fold is observed in the presently determined solution structure and the previously reported crystal structure of OmpX determined in the presence of the detergent n-octyltetraoxyethylene. Further structure refinement will have to rely on the additional resonance assignment of partially or fully protonated amino acid side chains, but the present data already demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure and function of integral membrane proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detailed characterization of denatured states of proteins is necessary to understand the interactions that funnel the large number of possible conformations along fast routes for folding. Nuclear magnetic resonance experiments based on the nuclear Overhauser effect (NOE) detect hydrogen atoms close in space and provide information about local structure. Here we present an NMR procedure that detects almost all sequential NOEs between amide hydrogen atoms (HN-HN NOE), including those in random coil regions in a protein, barnase, in urea solutions. A semi-quantitative analysis of these HN-HN NOEs identified partly structured regions that are in remarkable agreement with those found to form early on the reaction pathway. Our results strongly suggest that the folding of barnase initiates at the first helix and the beta-turn between the third and the fourth strands. This strategy of defining residual structure has also worked for cold-denatured barstar and guanidinium hydrochloride-denatured chymotrypsin inhibitor 2 and so should be generally applicable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A large superfamily of transmembrane receptors control cellular responses to diverse extracellular signals by catalyzing activation of specific types of heterotrimeric GTP-binding proteins. How these receptors recognize and promote nucleotide exchange on G protein α subunits to initiate signal amplification is unknown. The three-dimensional structure of the transducin (Gt) α subunit C-terminal undecapeptide Gtα(340–350) IKENLKDCGLF was determined by transferred nuclear Overhauser effect spectroscopy while it was bound to photoexcited rhodopsin. Light activation of rhodopsin causes a dramatic shift from a disordered conformation of Gtα(340–350) to a binding motif with a helical turn followed by an open reverse turn centered at Gly-348, a helix-terminating C capping motif of an αL type. Docking of the NMR structure to the GDP-bound x-ray structure of Gt reveals that photoexcited rhodopsin promotes the formation of a continuous helix over residues 325–346 terminated by the C-terminal helical cap with a unique cluster of crucial hydrophobic side chains. A molecular mechanism by which activated receptors can control G proteins through reversible conformational changes at the receptor–G protein interface is demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Duocarmycin A (Duo) normally alkylates adenine N3 at the 3′ end of A+T-rich sequences in DNA. The efficient adenine alkylation by Duo is achieved by its monomeric binding to the DNA minor groove. The addition of another minor groove binder, distamycin A (Dist), dramatically modulates the site of DNA alkylation by Duo, and the alkylation switches preferentially to G residues in G+C-rich sequences. HPLC product analysis using oligonucleotides revealed a highly efficient G–N3 alkylation via the cooperative binding of a heterodimer between Duo and Dist to the minor groove. The three-dimensional structure of the ternary alkylated complex of Duo/Dist/d(CAGGTGGT)·d(ACCACCTG) has been determined by nuclear Overhauser effect (NOE)-restrained refinement using 750 MHz two-dimensional NOE spectroscopy data. The refined NMR structure fully explains the sequence requirement of such modulated alkylations. This is the first demonstration of Duo DNA alkylation through cooperative binding with another structurally different natural product, and it suggests a promising new way to alter or modify the DNA alkylation selectivity in a predictable manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The helicity in water has been determined for several series of alanine-rich peptides that contain single lysine residues and that are N-terminally linked to a helix-inducing and reporting template termed Ac-Hel1. The helix-propagating constant for alanine (sAla value) that best fits the properties of these peptides lies in the range of 1.01-1.02, close to the value reported by Scheraga and coworkers [Wojcik, J., Altmann, K.-H. & Scheraga, H.A. (1990) Biopolymers 30, 121-134], but significantly lower than the value assigned by Baldwin and coworkers [Chakrabartty, A., Kortemme, T. & Baldwin, R.L. (1994) Protein Sci. 3,843-852]. From a study of conjugates Ac-Hel1-Ala(n)-Lys-Ala(m)-NH2 and analogs in which the methylene portion of the lysine side chain is truncated, we find that the unusual helical stability of Ala(n)Lys peptides is controlled primarily by interactions of the lysine side chain with the helix barrel, and only passively by the alanine matrix. Using 1H NMR spectroscopy, we observe nuclear Overhauser effect crosspeaks consistent with proton-proton contacts expected for these interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below ∼25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, this size limit has been previously extended by additional labeling with deuterium (2H). The present paper shows that the implementation of transverse relaxation-optimized spectroscopy ([15N,1H]-TROSY) into triple resonance experiments results in several-fold improved sensitivity for 2H/13C/15N-labeled proteins and approximately twofold sensitivity gain for 13C/15N-labeled proteins. Pulse schemes and spectra recorded with deuterated and protonated proteins are presented for the [15N, 1H]-TROSY-HNCA and [15N, 1H]-TROSY-HNCO experiments. A theoretical analysis of the HNCA experiment shows that the primary TROSY effect is on the transverse relaxation of 15N, which is only little affected by deuteration, and predicts sensitivity enhancements that are in close agreement with the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the widely accepted view that transcription of gid and mioC is required for efficient initiation of cloned oriC, we show that these transcriptions have very little effect on initiation of chromosome replication at wild-type chromosomal oriC. Furthermore, neither gid nor mioC transcription is required in cells deficient in the histone-like proteins Fis or IHF. However, oriC that is sufficiently impaired for initiation by deletion of DnaA box R4 requires transcription of at least one of these genes. We conclude that transcription of mioC and especially gid is needed to activate oriC only under suboptimal conditions. We suggest that either the rifampicin-sensitive step of initiation is some other transcription occurring from promoter(s) within oriC, or the original inference of transcriptional activation derived from the rifampicin experiments is incorrect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recoverin is a heterogeneously acylated calcium-binding protein thought to regulate visual transduction. Its effect on the photoresponse was investigated by dialyzing the recombinant protein into truncated salamander rod outer segments. At high Ca2+ (Ca), myristoylated recoverin (Ca-recoverin) prolonged the recovery phase of the bright flash response but had less effect on the dim flash response. The prolongation of recovery had an apparent Kd for Ca of 13 μM and a Hill coefficient of 2. The prolongation was shown to be mediated by inhibition of rhodopsin deactivation. After a sudden imposed drop in Ca concentration, the effect of recoverin switched off with little lag. The myristoyl (C14:0) modification of recoverin increased its activity 12-fold, and the C12:0 or C14:2 acyl group gave similar effects. These experiments support the notion that recoverin mediates Ca-dependent inhibition of rhodopsin phosphorylation and thereby controls light-triggered phosphodiesterase activity, particularly at high light levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been assumed that the red cell membrane is highly permeable to gases because the molecules of gases are small, uncharged, and soluble in lipids, such as those of a bilayer. The disappearance of 12C18O16O from a red cell suspension as the 18O exchanges between labeled CO2 + HCO3− and unlabeled HOH provides a measure of the carbonic anhydrase (CA) activity (acceleration, or A) inside the cell and of the membrane self-exchange permeability to HCO3− (Pm,HCO−3). To test this technique, we added sufficient 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate (DIDS) to inhibit all the HCO3−/Cl− transport protein (Band III or capnophorin) in a red cell suspension. We found that DIDS reduced Pm,HCO−3 as expected, but also appeared to reduce intracellular A, although separate experiments showed it has no effect on CA activity in homogenous solution. A decrease in Pm,CO2 would explain this finding. With a more advanced computational model, which solves for CA activity and membrane permeabilities to both CO2 and HCO3−, we found that DIDS inhibited both Pm,HCO−3 and Pm,CO2, whereas intracellular CA activity remained unchanged. The mechanism by which DIDS reduces CO2 permeability may not be through an action on the lipid bilayer itself, but rather on a membrane transport protein, implying that this is a normal route for at least part of red cell CO2 exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical eyeblink conditioning is a well-characterized model paradigm that engages the septohippocampal cholinergic system. This form of associative learning is impaired in normal aging and severely disrupted in Alzheimer's disease (AD). Some nicotinic cholinergic receptor subtypes are lost in AD, making the use of nicotinic allosterically potentiating ligands a promising therapeutic strategy. The allosterically potentiating ligand galantamine (Gal) modulates nicotinic cholinergic receptors to increase acetylcholine release as well as acting as an acetylcholinesterase (AChE) inhibitor. Gal was tested in two preclinical experiments. In Experiment 1 with 16 young and 16 older rabbits, Gal (3.0 mg/kg) was administered for 15 days during conditioning, and the drug significantly improved learning, reduced AChE levels, and increased nicotinic receptor binding. In Experiment 2, 53 retired breeder rabbits were tested over a 15-wk period in four conditions. Groups of rabbits received 0.0 (vehicle), 1.0, or 3.0 mg/kg Gal for the entire 15-wk period or 3.0 mg/kg Gal for 15 days and vehicle for the remainder of the experiment. Fifteen daily conditioning sessions and subsequent retention and relearning assessments were spaced at 1-month intervals. The dose of 3.0 mg/kg Gal ameliorated learning deficits significantly during acquisition and retention in the group receiving 3.0 mg/kg Gal continuously. Nicotinic receptor binding was significantly increased in rabbits treated for 15 days with 3.0 mg/kg Gal, and all Gal-treated rabbits had lower levels of brain AChE. The efficacy of Gal in a learning paradigm severely impaired in AD is consistent with outcomes in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Caenorhabditis elegans maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, encode nuclear proteins that are essential for germ-line development. They are thought to be involved in a common process because their mutant phenotypes are similar. MES-2 and MES-6 are homologs of Enhancer of zeste and extra sex combs, both members of the Polycomb group of chromatin regulators in insects and vertebrates. MES-3 is a novel protein, and MES-4 is a SET-domain protein. To investigate whether the MES proteins interact and likely function as a complex, we performed biochemical analyses on C. elegans embryo extracts. Results of immunoprecipitation experiments indicate that MES-2, MES-3, and MES-6 are associated in a complex and that MES-4 is not associated with this complex. Based on in vitro binding assays, MES-2 and MES-6 interact directly, via the amino terminal portion of MES-2. Sucrose density gradient fractionation and gel filtration chromatography were performed to determine the Stokes radius and sedimentation coefficient of the MES-2/MES-3/MES-6 complex. Based on those two values, we estimate that the molecular mass of the complex is ≈255 kDa, close to the sum of the three known components. Our results suggest that the two C. elegans Polycomb group homologs (MES-2 and MES-6) associate with a novel partner (MES-3) to regulate germ-line development in C. elegans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans affect biodiversity at the genetic, species, community, and ecosystem levels. This impact on genetic diversity is critical, because genetic diversity is the raw material of evolutionary change, including adaptation and speciation. Two forces affecting genetic variation are genetic drift (which decreases genetic variation within but increases genetic differentiation among local populations) and gene flow (which increases variation within but decreases differentiation among local populations). Humans activities often augment drift and diminish gene flow for many species, which reduces genetic variation in local populations and prevents the spread of adaptive complexes outside their population of origin, thereby disrupting adaptive processes both locally and globally within a species. These impacts are illustrated with collared lizards (Crotaphytus collaris) in the Missouri Ozarks. Forest fire suppression has reduced habitat and disrupted gene flow in this lizard, thereby altering the balance toward drift and away from gene flow. This balance can be restored by managed landscape burns. Some have argued that, although human-induced fragmentation disrupts adaptation, it will also ultimately produce new species through founder effects. However, population genetic theory and experiments predict that most fragmentation events caused by human activities will facilitate not speciation, but local extinction. Founder events have played an important role in the macroevolution of certain groups, but only when ecological opportunities are expanding rather than contracting. The general impact of human activities on genetic diversity disrupts or diminishes the capacity for adaptation, speciation, and macroevolutionary change. This impact will ultimately diminish biodiversity at all levels.