3 resultados para OVER-DENSITY

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hierarchy of residue density assessments and packing properties in protein structures are contrasted, including a regular density, a variety of charge densities, a hydrophobic density, a polar density, and an aromatic density. These densities are investigated by alternative distance measures and also at the interface of multiunit structures. Amino acids are divided into nine structural categories according to three secondary structure states and three solvent accessibility levels. To take account of amino acid abundance differences across protein structures, we normalize the observed density by the expected density defining a density index. Solvent accessibility levels exert the predominant influence in determinations of the regular residue density. Explicitly, the regular density values vary approximately linearly with respect to solvent accessibility levels, the linearity parameters depending on the amino acid. The charge index reveals pronounced inequalities between lysine and arginine in their interactions with acidic residues. The aromatic density calculations in all structural categories parallel the regular density calculations, indicating that the aromatic residues are distributed as a random sample of all residues. Moreover, aromatic residues are found to be over-represented in the neighborhood of all amino acids. This result might be attributed to nucleation sites and protein stability being substantially associated with aromatic residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The residue environment in protein structures is studied with respect to the density of carbon (C), oxygen (O), and nitrogen (N) atoms within a certain distance (say 5 Å) of each residue. Two types of environments are evaluated: one based on side-chain atom contacts (abbreviated S-S) and the other based on all atom (side-chain + backbone) contacts (abbreviated A-A). Different atom counts are observed about nine-residue structural categories defined by three solvent accessibility levels and three secondary structure states. Among the structural categories, the S-S atom count ratios generally vary more than the A-A atom count ratios because of the fact that the backbone (O) and (N) atoms contribute equal counts. Secondary structure affects the (C) density for the A-A contacts whereas secondary structure has little influence on the (C) density for the S-S contacts. For S-S contacts, a greater density of (O) over (N) atom neighbors stands out in the environment of most amino acid types. By contrast, for A-A contacts, independent of the solvent accessibility levels, the ratio (O)/(N) is ≈1 in helical states, consistent with the geometry of α-helical residues whose side-chains tilt oppositely to the amino to carboxy α-helical axis. The highest ratio of neighbor (O)/(N) is achieved under solvent exposed conditions. This (O) vs. (N) prevalence is advantageous at the protein surface that generally exhibits an acid excess that helps to enhance protein solubility in the cell and to avoid nonspecific interactions with phosphate groups of DNA, RNA, and other plasma constituents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although many new diseases have emerged within the past 2 decades [Cohen, M. L. (1998) Brit. Med. Bull. 54, 523–532], attributing low numbers of animal hosts to the existence of even a new pathogen is problematic. This is because very rarely does one have data on host abundance before and after the epizootic as well as detailed descriptions of pathogen prevalence [Dobson, A. P. & Hudson, P. J. (1985) in Ecology of Infectious Diseases in Natural Populations, eds. Grenfell, B. T. & Dobson, A. P. (Cambridge Univ. Press, Cambridge, U.K.), pp. 52–89]. Month by month we tracked the spread of the epizootic of an apparently novel strain of a widespread poultry pathogen, Mycoplasma gallisepticum, through a previously unknown host, the house finch, whose abundance has been monitored over past decades. Here we are able to demonstrate a causal relationship between high disease prevalence and declining house finch abundance throughout the eastern half of North America because the epizootic reached different parts of the house finch range at different times. Three years after the epizootic arrived, house finch abundance stabilized at similar levels, although house finch abundance had been high and stable in some areas but low and rapidly increasing in others. This result, not previously documented in wild populations, is as expected from theory if transmission of the disease was density dependent.