3 resultados para OPEN SPIN CHAINS
em National Center for Biotechnology Information - NCBI
Resumo:
The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged 〈Azz〉 element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.
Resumo:
The human cytomegalovirus (HCMV) early glycoprotein products of the US11 and US2 open reading frames cause increased turnover of major histocompatibility complex (MHC) class I heavy chains. Since US2 is homologous to another HCMV gene (US3), we hypothesized that the US3 gene product also may affect MHC class I expression. In cells constitutively expressing the HCMV US3 gene, MHC class I heavy chains formed a stable complex with beta 2-microglobulin. However, maturation of the N-linked glycan of MHC class I heavy chains was impaired in US3+ cells. The glycoprotein product of US3 (gpUS3) occurs mostly in a high-mannose form and coimmunoprecipitates with beta 2-microglobulin associated class I heavy chains. Mature class I molecules were detected at steady state on the surface of US3+ cells, as in control cells. Substantial perinuclear accumulation of heavy chains was observed in US3+ cells. The data suggest that gpUS3 impairs egress of MHC class I heavy chains from the endoplasmic reticulum.
Resumo:
The question of whether proteins originate from random sequences of amino acids is addressed. A statistical analysis is performed in terms of blocked and random walk values formed by binary hydrophobic assignments of the amino acids along the protein chains. Theoretical expectations of these variables from random distributions of hydrophobicities are compared with those obtained from functional proteins. The results, which are based upon proteins in the SWISS-PROT data base, convincingly show that the amino acid sequences in proteins differ from what is expected from random sequences in a statistically significant way. By performing Fourier transforms on the random walks, one obtains additional evidence for nonrandomness of the distributions. We have also analyzed results from a synthetic model containing only two amino acid types, hydrophobic and hydrophilic. With reasonable criteria on good folding properties in terms of thermodynamical and kinetic behavior, sequences that fold well are isolated. Performing the same statistical analysis on the sequences that fold well indicates similar deviations from randomness as for the functional proteins. The deviations from randomness can be interpreted as originating from anticorrelations in terms of an Ising spin model for the hydrophobicities. Our results, which differ from some previous investigations using other methods, might have impact on how permissive with respect to sequence specificity protein folding process is-only sequences with nonrandom hydrophobicity distributions fold well. Other distributions give rise to energy landscapes with poor folding properties and hence did not survive the evolution.