4 resultados para O33 - Technological Change: Choices and Consequences
em National Center for Biotechnology Information - NCBI
Resumo:
Whether the U.S. health care system supports too much technological change—so that new technologies of low value are adopted, or worthwhile technologies become overused—is a controversial question. This paper analyzes the marginal value of technological change for elderly heart attack patients in 1984–1990. It estimates the additional benefits and costs of treatment by hospitals that are likely to adopt new technologies first or use them most intensively. If the overall value of the additional treatments is declining, then the benefits of treatment by such intensive hospitals relative to other hospitals should decline, and the additional costs of treatment by such hospitals should rise. To account for unmeasured changes in patient mix across hospitals that might bias the results, instrumental–variables methods are used to estimate the incremental mortality benefits and costs. The results do not support the view that the returns to technological change are declining. However, the incremental value of treatment by intensive hospitals is low throughout the study period, supporting the view that new technologies are overused.
Resumo:
Objective: To identify which aspects of socioeconomic change were associated with the steep decline in life expectancy in Russia between 1990 and 1994.
Resumo:
The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as −3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.