2 resultados para Nyctibius griseus

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nearly complete skull of Parapithecus grangeri from the early Oligocene of Egypt is described. The specimen is relatively undistorted and is undoubtedly the most complete higher primate skull yet found in the African Oligocene, which also makes it the most complete Oligocene primate cranium worldwide. Belonging in superfamily Parapithecoidea, a group regarded by some as the sister group to all other Anthropoidea, this skull reveals important information about the radiation of stem anthropoideans. This cranium is about 15% larger than size estimates based on a fragmentary cranium of its contemporary and close relative Apidium phiomense. It is about the same size as that of the gray gentle lemur, Hapalemur griseus, or of platyrrhines such as the owl monkey, Aotus trivirgatus, or the titi monkey, Callicebus torquatus. Comparatively small orbits and size differences in jaws and teeth show it was both diurnal and dimorphic. This is the only specimen of the species that shows (from sockets) that there were four small upper incisors. Several mandibular specimens of the species establish that there were no permanent lower incisors and that the symphysis was fused. Like other early anthropoideans this species possessed a lower encephalization quotient and less-developed orbital frontality than later anthropoideans. There is full postorbital closure and fusion of the metopic suture, and the ectotympanic forms a rim to the auditory aperture. A probable frontal/alisphenoid contact is a potentially derived resemblance to Catarrhini. A proposed separate genus for the species P. grangeri is not sustained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis continues to be responsible for the deaths of millions of people, yet the virulence factors of the causative pathogens remain unknown. Genetic complementation experiments with strains of the Mycobacterium tuberculosis complex have identified a gene from a virulent strain that restores virulence to an attenuated strain. The gene, designated rpoV, has a high degree of homology with principal transcription or sigma factors from other bacteria, particularly Mycobacterium smegmatis and Streptomyces griseus. The homologous rpoV gene of the attenuated strain has a point mutation causing an arginine-->histidine change in a domain known to interact with promoters. To our knowledge, association of loss of bacterial virulence with a mutation in the principal sigma factor has not been previously reported. The results indicate either that tuberculosis organisms have an alternative principal sigma factor that promotes virulence genes or, more probably, that this particular mutant principal sigma factor is unable to promote expression of one or more genes required for virulence. Study of genes and proteins differentially regulated by the mutant transcription factor should facilitate identification of further virulence factors.