2 resultados para Numerical studies
em National Center for Biotechnology Information - NCBI
Resumo:
We describe the application of 59Co NMR to the study of naturally occurring cobalamins. Targets of these investigations included vitamin B12, the B12 coenzyme, methylcobalamin, and dicyanocobyrinic acid heptamethylester. These measurements were carried out on solutions and powders of different origins, and repeated at a variety of magnetic field strengths. Particularly informative were the solid-state central transition NMR spectra, which when combined with numerical line shape analyses provided a clear description of the cobalt coupling parameters. These parameters showed a high sensitivity to the type of ligands attached to the metal and to the crystallization history of the sample. 59Co NMR determinations also were carried out on synthetic cobaloximes possessing alkyl, cyanide, aquo, and nitrogenated axial groups, substituents that paralleled the coordination of the natural compounds. These analogs displayed coupling anisotropies comparable to those of the cobalamins, as well as systematic up-field shifts that can be rationalized in terms of their stronger binding affinity to the cobalt atom. Cobaloximes also displayed a higher regularity in the relative orientations of their quadrupole and shielding coupling tensors, reflecting a higher symmetry in their in-plane coordination. For the cobalamines, poor correlations were observed between the values measured for the quadrupole couplings in the solid and the line widths observed in the corresponding solution 59Co NMR resonances.
Resumo:
Research has demonstrated that human infants and nonhuman primates have a rudimentary numerical system that enables them to count objects or events. More recently, however, studies using a preferential looking paradigm have suggested that preverbal human infants are capable of simple arithmetical operations, such as adding and subtracting a small number of visually presented objects. These findings implicate a relatively sophisticated representational system in the absence of language. To explore the evolutionary origins of this capacity, we present data from an experiment with wild rhesus monkeys (Macaca mulatta) that methodologically mirrors those conducted on human infants. Results suggest that rhesus monkeys detect additive and subtractive changes in the number of objects present in their visual field. Given the methodological and empirical similarities, it appears that nonhuman primates such as rhesus monkeys may also have access to arithmetical representations, although alternative explanations must be considered for both primate species.