5 resultados para Nuclear spin.
em National Center for Biotechnology Information - NCBI
Resumo:
We report 13C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo- CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance 13C provide information on the electronic structure of the primary electron donor P680 (chlorophyll a molecules absorbing around 680 nm) and on the pz spin density pattern in its oxidized form, P680⨥. Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P680⨥. PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P680 by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.
Resumo:
The nuclear spin polarization of 129Xe can be enhanced by several orders of magnitude by using optical pumping techniques. The increased sensitivity of xenon NMR has allowed imaging of lungs as well as other in vivo applications. The most critical parameter for efficient delivery of laser-polarized xenon to blood and tissues is the spin-lattice relaxation time (T1) of xenon in blood. In this work, the relaxation of laser-polarized xenon in human blood is measured in vitro as a function of blood oxygenation. Interactions with dissolved oxygen and with deoxyhemoglobin are found to contribute to the spin-lattice relaxation time of 129Xe in blood, the latter interaction having greater effect. Consequently, relaxation times of 129Xe in deoxygenated blood are shorter than in oxygenated blood. In samples with oxygenation equivalent to arterial and venous blood, the 129Xe T1s at 37°C and a magnetic field of 1.5 T were 6.4 s ± 0.5 s and 4.0 s ± 0.4 s, respectively. The 129Xe spin-lattice relaxation time in blood decreases at lower temperatures, but the ratio of T1 in oxygenated blood to that in deoxygenated blood is the same at 37°C and 25°C. A competing ligand has been used to show that xenon binding to albumin contributes to the 129Xe spin-lattice relaxation in blood plasma. This technique is promising for the study of xenon interactions with macromolecules.
Resumo:
By means of optical pumping with laser light it is possible to enhance the nuclear spin polarization of gaseous xenon by four to five orders of magnitude. The enhanced polarization has allowed advances in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI), including polarization transfer to molecules and imaging of lungs and other void spaces. A critical issue for such applications is the delivery of xenon to the sample while maintaining the polarization. Described herein is an efficient method for the introduction of laser-polarized xenon into systems of biological and medical interest for the purpose of obtaining highly enhanced NMR/MRI signals. Using this method, we have made the first observation of the time-resolved process of xenon penetrating the red blood cells in fresh human blood—the xenon residence time constant in the red blood cells was measured to be 20.4 ± 2 ms. The potential of certain biologically compatible solvents for delivery of laser-polarized xenon to tissues for NMR/MRI is discussed in light of their respective relaxation and partitioning properties.
Resumo:
The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below ∼25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, this size limit has been previously extended by additional labeling with deuterium (2H). The present paper shows that the implementation of transverse relaxation-optimized spectroscopy ([15N,1H]-TROSY) into triple resonance experiments results in several-fold improved sensitivity for 2H/13C/15N-labeled proteins and approximately twofold sensitivity gain for 13C/15N-labeled proteins. Pulse schemes and spectra recorded with deuterated and protonated proteins are presented for the [15N, 1H]-TROSY-HNCA and [15N, 1H]-TROSY-HNCO experiments. A theoretical analysis of the HNCA experiment shows that the primary TROSY effect is on the transverse relaxation of 15N, which is only little affected by deuteration, and predicts sensitivity enhancements that are in close agreement with the experimental data.
Resumo:
Solid-state NMR spectra of natural abundance 13C in reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R-26 was measured. When the quinone acceptors were removed and continuous visible illumination of the sample was provided, exceptionally strong nuclear spin polarization was observed in NMR lines with chemical shifts resembling those of the aromatic carbons in bacteriochlorophyll and bacteriopheophytin. The observation of spin polarized 15N nuclei in bacteriochlorophyll and bacteriopheophytin was previously demonstrated with nonspecifically 15N-labeled reaction centers. Both the carbon and the nitrogen NMR studies indicate that the polarization is developed on species that carry unpaired electrons in the early electron transfer steps, including the bacteriochlorophyll dimer donor P860 and probably the bacteriopheophytin acceptor. I. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum; most lines were absorptive but the methine carbons of the porphyrin ring (alpha, beta, gamma, ) exhibited emissive polarization. The change in the sign of the hyperfine coupling at these sites indicates the existence of nodes in the spin density distribution on the tetrapyrrole cofactors flanking each methine carbon bridge.