2 resultados para Nuclear science.

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear tRNA aminoacylation was proposed to provide a proofreading step in Xenopus oocytes, ensuring nuclear export of functional tRNAs [Lund, E. & Dahlberg, J. E. (1998) Science 282, 2082–2085]. Herein, it is documented that tRNA aminoacylation also occurs in yeast nuclei and is important for tRNA export. We propose that tRNA aminoacylation functions in one of at least two parallel paths of tRNA export in yeast. Alteration of one aminoacyl-tRNA synthetase affects export of only cognate tRNA, whereas alterations of two other aminoacyl-tRNA synthetases affect export of both cognate and noncognate tRNAs. Saturation of tRNA export pathway is a possible explanation of this phenomenon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium.