4 resultados para Non-minimum phase systems

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A colonial protochordate, Botryllus schlosseri, undergoes a natural transplantation reaction in the wild that results alternatively in colony fusion (chimera formation) or inflammatory rejection. A single, highly polymorphic histocompatibility locus (called Fu/HC) is responsible for rejection versus fusion. Gonads are seeded and gametogenesis can occur in colonies well after fusion, and involves circulating germ-line progenitors. Buss proposed that colonial organisms might develop self/non-self histocompatibility systems to limit the possibility of interindividual germ cell “parasitism” (GCP) to histocompatible kin [Buss, L. W. (1982) Proc. Natl. Acad. Sci. USA 79, 5337–5341 and Buss, L. W. (1987) The Evolution of Individuality (Princeton Univ. Press, Princeton]. Here we demonstrate in laboratory and field experiments that both somatic cell and (more importantly) germ-line parasitism are a common occurrence in fused chimeras. These experiments support the tenet in Buss’s hypothesis that germ cell and somatic cell parasitism can occur in fused chimeras and that a somatic appearance may mask the winner of a gametic war. They also provide an interesting challenge to develop formulas that describe the inheritance of competing germ lines rather than competing individuals. The fact that fused B. schlosseri have higher rates of GCP than unfused colonies additionally provides a rational explanation for the generation and maintenance of a high degree of Fu/HC polymorphism, largely limiting GCP to sibling offspring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral vectors based on adeno-associated virus (AAV) preferentially transduce cells in S phase of the cell cycle. We recently found that DNA-damaging agents increased the transduction of nondividing cells. However, the optimal concentrations were toxic to cells. Here we show that the transduction of normal human fibroblasts by AAV vectors is increased by prior exposure to DNA synthesis inhibitors, such as aphidicolin or hydroxyurea, and topoisomerase inhibitors, such as etoposide or camptothecin. Transduction efficiencies could be increased > 300-fold in stationary cultures at concentrations that did not affect cell viability or proliferative potential. Both S-phase and non-S-phase cells were affected, suggesting that cellular functions other than replicative DNA synthesis may be involved. Applying these methods to gene transfer protocols should improve prospects for gene therapy by AAV vectors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The semiempirical PM3 method, calibrated against ab initio HF/6–31+G(d) theory, has been used to elucidate the reaction of 1,2-dichloroethane (DCE) with the carboxylate of Asp-124 at the active site of haloalkane dehalogenase of Xanthobacter autothropicus. Asp-124 and 13 other amino acid side chains that make up the active site cavity (Glu-56, Trp-125, Phe-128, Phe-172, Trp-175, Leu-179, Val-219, Phe-222, Pro-223, Val-226, Leu-262, Leu-263, and His-289) were included in the calculations. The three most significant observations of the present study are that: (i) the DCE substrate and Asp-124 carboxylate, in the reactive ES complex, are present as an ion-molecule complex with a structure similar to that seen in the gas-phase reaction of AcO− with DCE; (ii) the structures of the transition states in the gas-phase and enzymatic reaction are much the same where the structure formed at the active site is somewhat exploded; and (iii) the enthalpies in going from ground states to transition states in the enzymatic and gas-phase reactions differ by only a couple kcal/mol. The dehalogenase derives its catalytic power from: (i) bringing the electrophile and nucleophile together in a low-dielectric environment in an orientation that allows the reaction to occur without much structural reorganization; (ii) desolvation; and (iii) stabilizing the leaving chloride anion by Trp-125 and Trp-175 through hydrogen bonding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.