9 resultados para Nilpotent-by-Finite Group

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some group I introns self-splice in vitro, but almost all are thought to be assisted by proteins in vivo. Mutational analysis has shown that the splicing of certain group I introns depends upon a maturase protein encoded by the intron itself. However the effect of a protein on splicing can be indirect. We now provide evidence that a mitochondrial intron-encoded protein from Aspergillus nidulans directly facilitates splicing in vitro. This demonstrates that a maturase is an RNA splicing protein. The protein-assisted reaction is as fast as that of any other known group I intron. Interestingly the protein is also a DNA endonuclease, an activity required for intron mobilization. Mobile elements frequently encode proteins that promote their propagation. Intron-encoded proteins that also assist RNA splicing would facilitate both the transposition and horizontal transmission of introns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now show that this intron is in fact widespread among angiosperm cox1 genes, but with an exceptionally patchy phylogenetic distribution. Four lines of evidence—the intron’s highly disjunct distribution, many incongruencies between intron and organismal phylogenies, and two sources of evidence from exonic coconversion tracts—lead us to conclude that the 48 angiosperm genera found to contain this cox1 intron acquired it by 32 separate horizontal transfer events. Extrapolating to the over 13,500 genera of angiosperms, we estimate that this intron has invaded cox1 genes by cross-species horizontal transfer over 1,000 times during angiosperm evolution. This massive wave of lateral transfers is of entirely recent occurrence, perhaps triggered by some key shift in the intron’s invasiveness within angiosperms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-third of humans are infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. Sequence analysis of two megabases in 26 structural genes or loci in strains recovered globally discovered a striking reduction of silent nucleotide substitutions compared with other human bacterial pathogens. The lack of neutral mutations in structural genes indicates that M. tuberculosis is evolutionarily young and has recently spread globally. Species diversity is largely caused by rapidly evolving insertion sequences, which means that mobile element movement is a fundamental process generating genomic variation in this pathogen. Three genetic groups of M. tuberculosis were identified based on two polymorphisms that occur at high frequency in the genes encoding catalase-peroxidase and the A subunit of gyrase. Group 1 organisms are evolutionarily old and allied with M. bovis, the cause of bovine tuberculosis. A subset of several distinct insertion sequence IS6110 subtypes of this genetic group have IS6110 integrated at the identical chromosomal insertion site, located between dnaA and dnaN in the region containing the origin of replication. Remarkably, study of ≈6,000 isolates from patients in Houston and the New York City area discovered that 47 of 48 relatively large case clusters were caused by genotypic group 1 and 2 but not group 3 organisms. The observation that the newly emergent group 3 organisms are associated with sporadic rather than clustered cases suggests that the pathogen is evolving toward a state of reduced transmissability or virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selected aspects of the evolutionary process and more specifically of the genetic variation are considered, with an emphasis in studies performed by my group. One key aspect of evolution seems to be the concomitant occurrence of dichotomic, contradictory (dialect) processes. Genetic variation is structured, and the dynamics of change at one level is not necessarily paralleled by that in another. The pathogenesis-related protein superfamily can be cited as an example in which permanence (the maintenance of certain key genetic features) coexists with change (modifications that led to different functions in different classes of organisms). Relationships between structure and function are exemplified by studies with hemoglobin Porto Alegre. The genetic structure of tribal populations may differ in important aspects from that of industrialized societies. Evolutionary histories also may differ when considered through the investigation of patrilineal or matrilineal lineages. Global evaluations taking into consideration all of these aspects are needed if we really want to understand the meaning of genetic variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progress in agricultural and environmental technologies is hampered by a slower rate of gene discovery in plants than animals. The vast pool of genes in plants, however, will be an important resource for insertion of genes, via biotechnological procedures, into an array of plants, generating unique germ plasms not achievable by conventional breeding. It just became clear that genomes of grasses have evolved in a manner analogous to Lego blocks. Large chromosome segments have been reshuffled and stuffer pieces added between genes. Although some genomes have become very large, the genome with the fewest stuffer pieces, the rice genome, is the Rosetta Stone of all the bigger grass genomes. This means that sequencing the rice genome as anchor genome of the grasses will provide instantaneous access to the same genes in the same relative physical position in other grasses (e.g., corn and wheat), without the need to sequence each of these genomes independently. (i) The sequencing of the entire genome of rice as anchor genome for the grasses will accelerate plant gene discovery in many important crops (e.g., corn, wheat, and rice) by several orders of magnitudes and reduce research and development costs for government and industry at a faster pace. (ii) Costs for sequencing entire genomes have come down significantly. Because of its size, rice is only 12% of the human or the corn genome, and technology improvements by the human genome project are completely transferable, translating in another 50% reduction of the costs. (iii) The physical mapping of the rice genome by a group of Japanese researchers provides a jump start for sequencing the genome and forming an international consortium. Otherwise, other countries would do it alone and own proprietary positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exit from mitosis in budding yeast requires inactivation of cyclin-dependent kinases through mechanisms triggered by the protein phosphatase Cdc14. Cdc14 activity, in turn, is regulated by a group of proteins, the mitotic exit network (MEN), which includes Lte1, Tem1, Cdc5, Cdc15, Dbf2/Dbf20, and Mob1. The direct biochemical interactions between the components of the MEN remain largely unresolved. Here, we investigate the mechanisms that underlie activation of the protein kinase Dbf2. Dbf2 kinase activity depended on Tem1, Cdc15, and Mob1 in vivo. In vitro, recombinant protein kinase Cdc15 activated recombinant Dbf2, but only when Dbf2 was bound to Mob1. Conserved phosphorylation sites Ser-374 and Thr-544 (present in the human, Caenorhabditis elegans, and Drosophila melanogaster relatives of Dbf2) were required for DBF2 function in vivo, and activation of Dbf2-Mob1 by Cdc15 in vitro. Although Cdc15 phosphorylated Dbf2, Dbf2–Mob1, and Dbf2(S374A/T544A)–Mob1, the pattern of phosphate incorporation into Dbf2 was substantially altered by either the S374A T544A mutations or omission of Mob1. Thus, Cdc15 promotes the exit from mitosis by directly switching on the kinase activity of Dbf2. We propose that Mob1 promotes this activation process by enabling Cdc15 to phosphorylate the critical Ser-374 and Thr-544 phosphoacceptor sites of Dbf2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A typical homing endonuclease initiates mobility of its group I intron by recognizing DNA both upstream and downstream of the intron insertion site of intronless alleles, preventing the endonuclease from binding and cleaving its own intron-containing allele. Here, we describe a GIY-YIG family homing endonuclease, I-BmoI, that possesses an unusual recognition sequence, encompassing 1 base pair upstream but 38 base pairs downstream of the intron insertion site. I-BmoI binds intron-containing and intronless substrates with equal affinity but can nevertheless discriminate between the two for cleavage. I-BmoI is encoded by a group I intron that interrupts the thymidylate synthase (TS) gene (thyA) of Bacillus mojavensis s87-18. This intron resembles one inserted 21 nucleotides further downstream in a homologous TS gene (td) of Escherichia coli phage T4. I-TevI, the T4 td intron-encoded GIY-YIG endonuclease, is very similar to I-BmoI, but each endonuclease gene is inserted within a different position of its respective intron. Remarkably, I-TevI and I-BmoI bind a homologous stretch of TS-encoding DNA and cleave their intronless substrates in very similar positions. Our results suggest that each endonuclease has independently evolved the ability to distinguish intron-containing from intronless alleles while maintaining the same conserved recognition sequence centered on DNA-encoding active site residues of TS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytoplasmic dynein is a multisubunit, microtubule-associated, mechanochemical enzyme that has been identified as a retrograde transporter of various membranous organelles. Dynactin, an additional multisubunit complex, is required for efficient dynein-mediated transport of vesicles in vitro. Recently, we showed that three genes defined by a group of phenotypically identical mutants of the filamentous fungus Neurospora crassa encode proteins that are apparent subunits of either cytoplasmic dynein or dynactin. These mutants, designated ropy (ro), display abnormal hyphal growth and are defective in nuclear distribution. We propose that mutations in other genes encoding dynein/dynactin subunits are likely to result in a ropy phenotype and have devised a genetic screen for the isolation of additional ro mutants. Cytoplasmic dynein/dynactin is the largest and most complex of the cytoplasmic motor proteins, and the genetic system described here is unique in its potentiality for identifying mutations in undefined genes encoding dynein/dynactin subunits or regulators. We used this screen to isolate > 1000 ro mutants, which were found to define 23 complementation groups. Unexpectedly, interallelic complementation was observed with some allele pairs of ro-1 and ro-3, which are predicted to encode the largest subunits of cytoplasmic dynein and dynactin, respectively. The results suggest that the Ro1 and Ro3 polypeptides may consist of multiple, functionally independent domains. In addition, approximately 10% of all newly isolated ro mutantsdisplay unlinked noncomplementation with two or more of the mutants that define the 23 complementation groups. The frequent appearance of ro mutants showing noncomplementation with multiple ro mutants having unlinked mutations suggests that nuclear distribution in filamentous fungi is a process that is easily disrupted by affecting either dosage or activity of cytoplasmic dynein, dynactin, and perhaps other cytoskeletal proteins or regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The A subunit of DNA gyrase in Mycobacterium leprae, unlike its counterpart in Mycobacterium tuberculosis, is produced by protein splicing as its gene, gyrA, harbors a 1260-bp in-frame insertion encoding an intein, a putative homing endonuclease. Analysis of the gyrA locus from different mycobacterial species revealed the presence of inteins in Mycobacterium flavescens, Mycobacterium gordonae and Mycobacterium kansasii but not in 10 other pathogenic or saprophytic mycobacteria. In all four cases where intein coding sequences were found, they were localized in the same position in gyrA, immediately downstream of the codon for the key active-site residue Tyr-130. The intein products were similar, but not identical, in sequence and the splice junctions displayed all the features found in other polypeptides known to be produced by protein splicing from a precursor protein. Paired motifs, found in homing endonucleases encoded by some group I RNA introns, and inteins showing endonuclease activity, were present in the gyrA inteins as were other intein-specific signatures. Some strains of M. flavescens, M. gordonae, and M. kansasii were shown by PCR analysis to have inteinless gyrA genes, in contrast to the situation in M. leprae where all the isolates possessed insertions in gyrA. Sequencing of the corresponding regions revealed that, although the GyrA protein sequence was conserved, the nucleotide sequences differed in gyrA genes with and without inteins, suggesting that the homing endonuclease displays sequence specificity.