6 resultados para New products.

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose and other reducing sugars react with proteins by a nonenzymatic, posttranslational modification process called nonenzymatic glycation. The formation of advanced glycation end products (AGEs) on connective tissue and matrix components accounts largely for the increase in collagen crosslinking that accompanies normal aging and which occurs at an accelerated rate in diabetes, leading to an increase in arterial stiffness. A new class of AGE crosslink “breakers” reacts with and cleaves these covalent, AGE-derived protein crosslinks. Treatment of rats with streptozotocin-induced diabetes with the AGE-breaker ALT-711 for 1–3 weeks reversed the diabetes-induced increase of large artery stiffness as measured by systemic arterial compliance, aortic impedance, and carotid artery compliance and distensibility. These findings will have considerable implications for the treatment of patients with diabetes-related complications and aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The til-1 locus was identified as a common retroviral integration site in virus-accelerated lymphomas of CD2-myc transgenic mice. We now show that viral insertions at til-1 lead to transcriptional activation of PEBP2αA (CBFA1), a transcription factor related to the Drosophila segmentation gene product, Runt. Insertions are upstream and in the opposite orientation to the gene and appear to activate a variant promoter that is normally silent in T cells. Activity of this promoter was detected in rodent osteogenic sarcoma cells and primary osteoblasts, implicating bone as the normal site of promoter activity. The isoforms encoded by the activated gene all encompass the conserved runt DNA-binding domain and share a novel N terminus different from the previously reported PEBP2αA products. Minor products include isoforms with internal deletions due to exon skipping and a novel C-terminal domain unrelated to known runt domain factors. The major isoform expressed from the activated til-1 locus (G1) was found to account for virtually all of the core binding factor activity in nuclear extracts from its corresponding lymphoma cell line. Another member of this gene family, AML1(CBFA2), is well known for its involvement in human hemopoietic tumors. These results provide evidence of a direct oncogenic role for PEBP2αA and indicate that the Myc and Runt family genes can cooperate in oncogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Telomeric Repeat Amplification Protocol (TRAP) and its modified versions (including ours, TP-TRAP) change the size and/or the ratio of the telomerase products in the amplification stage of the assay. Based on our recently published method we developed a new TRAP. This method ensures that the number of telomeric repeats present in the original telomerase products does not change on PCR amplification. The usefulness of the method was proved with amplification of chemically synthesized telomerase products and a newly designed telomerase substrate oligonucleotide. This is the first report in which the PCR products directly reflect the size distribution of telomerase products generated by the enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crop gene pools have adapted to and sustained the demands of agricultural systems for thousands of years. Yet, very little is known about their content, distribution, architecture, or circuitry. The presumably shallow elite gene pools often continue to yield genetic gains while the exotic pools remain mostly untapped, uncharacterized, and underutilized. The concept and content of a crop’s gene pools are being changed by advancements in plant science and technology. In the first generation of plant genomics, DNA markers have refined some perceptions of genetic variation by providing a glimpse of a primary source, DNA polymorphism. The markers have provided new and more powerful ways of assessing genetic relationships, diversity, and merit by infusing genetic information for the first time in many scenarios or in a more comprehensive manner for others. As a result, crop gene pools may be supplemented through more rapid and directed methods from a greater variety of sources. Previously limited by the barriers of sexual reproduction, the native gene pools will soon be complemented by another gene pool (transgenes) and perhaps by other native exotic gene pools through comparative analyses of plants’ biological repertoire. Plant genomics will be an important force of change for crop improvement. The plant science community and crop gene pools may be united and enriched as never before. Also, the genomes and gene pools, the products of evolution and crop domestication, will be reduced and subjected to the vagaries and potential divisiveness of intellectual property considerations. Let the gains begin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key studies defining the DNA alkylation properties and selectivity of a new class of exceptionally potent, naturally occurring antitumor antibiotics including CC-1065, duocarmycin A, and duocarmycin SA are reviewed. Recent studies conducted with synthetic agents containing deep-seated structural changes and the unnatural enantiomers of the natural products and related analogs have defined the structural basis for the sequence-selective alkylation of duplex DNA and fundamental relationships between chemical structure, functional reactivity, and biological properties. The agents undergo a reversible, stereoelectronically controlled adenine-N3 addition to the least substituted carbon of the activated cyclopropane within selected AT-rich sites. The preferential AT-rich non-covalent binding selectivity of the agents within the narrower, deeper AT-rich minor groove and the steric accessibility to the alkylation site that accompanies deep AT-rich minor groove penetration control the sequence-selective DNA alkylation reaction and stabilize the resulting adduct. For the agents that possess sufficient reactivity to alkylate DNA, a direct relationship between chemical or functional stability and biological potency has been defined.