2 resultados para New Religious Movements

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In several cell types, an intriguing correlation exists between the position of the centrosome and the direction of cell movement: the centrosome is located behind the leading edge, suggesting that it serves as a steering device for directional movement. A logical extension of this suggestion is that a change in the direction of cell movement is preceded by a reorientation, or shift, of the centrosome in the intended direction of movement. We have used a fusion protein of green fluorescent protein (GFP) and γ-tubulin to label the centrosome in migrating amoebae of Dictyostelium discoideum, allowing us to determine the relationship of centrosome positioning and the direction of cell movement with high spatial and temporal resolution in living cells. We find that the extension of a new pseudopod in a migrating cell precedes centrosome repositioning. An average of 12 sec elapses between the initiation of pseudopod extension and reorientation of the centrosome. If no reorientation occurs within approximately 30 sec, the pseudopod is retracted. Thus the centrosome does not direct a cell’s migration. However, its repositioning stabilizes a chosen direction of movement, most probably by means of the microtubule system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large part of the pre-Columbian Maya book known as the Dresden Codex is concerned with an exploration of commensurate relationships among celestial cycles and their relationship to other, nonastronomical cycles of cultural interest. As has long been known, pages 43b–45b of the Codex are concerned with the synodic cycle of Mars. New work reported here with another part of the Codex, a complex table on pages 69–74, reveals a concern on the part of the ancient Maya astronomers with the sidereal motion of Mars as well as with its synodic cycle. Two kinds of empiric sidereal intervals of Mars were used, a long one (702 days) that included a retrograde loop and a short one that did not. The use of these intervals, which is indicated by the documents in the Dresden Codex, permitted the tracking of Mars across the zodiac and the relating of its movements to the terrestrial seasons and to the 260-day sacred calendar. While Kepler solved the sidereal problem of Mars by proposing an elliptical heliocentric orbit, anonymous but equally ingenious Maya astronomers discovered a pair of time cycles that not only accurately described the planet's motion, but also related it to other cosmic and terrestrial concerns.