19 resultados para Neuropeptides.
em National Center for Biotechnology Information - NCBI
Resumo:
Searching for nervous system candidates that could directly induce T cell cytokine secretion, I tested four neuropeptides (NPs): somatostatin, calcitonin gene-related peptide, neuropeptide Y, and substance P. Comparing neuropeptide-driven versus classical antigen-driven cytokine secretion from T helper cells Th0, Th1, and Th2 autoimmune-related T cell populations, I show that the tested NPs, in the absence of any additional factors, directly induce a marked secretion of cytokines [interleukin 2 (IL-2), interferon-γ, IL-4, and IL-10) from T cells. Furthermore, NPs drive distinct Th1 and Th2 populations to a “forbidden” cytokine secretion: secretion of Th2 cytokines from a Th1 T cell line and vice versa. Such a phenomenon cannot be induced by classical antigenic stimulation. My study suggests that the nervous system, through NPs interacting with their specific T cell-expressed receptors, can lead to the secretion of both typical and atypical cytokines, to the breakdown of the commitment to a distinct Th phenotype, and a potentially altered function and destiny of T cells in vivo.
Resumo:
The effect of three peptides, galanin, sulfated cholecystokinin octapeptide, and neurotensin (NT), was studied on acutely extirpated rat dorsal root ganglia (DRGs) in vitro with intracellular recording techniques. Both normal and peripherally axotomized DRGs were analyzed, and recordings were made from C-type (small) and A-type (large) neurons. Galanin and sulfated cholecystokinin octapeptide, with one exception, had no effect on normal C- and A-type neurons but caused an inward current in both types of neurons after sciatic nerve cut. In normal rats, NT caused an outward current in C-type neurons and an inward current in A-type neurons. After sciatic nerve cut, NT only caused an inward current in both C- and A-type neurons. These results suggest that (i) normal DRG neurons express receptors on their soma for some but not all peptides studied, (ii) C- and A-type neurons can have different types of receptors, and (iii) peripheral nerve injury can change the receptor phenotype of both C- and A-type neurons and may have differential effects on these neuron types.
Resumo:
Indirect immunofluorescence methods using a mouse monoclonal antibody raised to rat choline acetyltransferase (ChAT) revealed dense networks of ChAT-immunoreactive fibers in the superior cervical ganglion, the stellate ganglion, and the celiac superior mesenteric ganglion of the rat. Numerous and single ChAT-immunoreactive cell bodies were observed in the stellate and superior cervical ganglia, respectively. The majority of ChAT-immunoreactive fibers in the stellate and superior cervical ganglia were nitric oxide synthase (NOS) positive. Some ChAT-immunoreactive fibers contained enkephalin-like immunoreactivity. Virtually all ChAT-positive cell bodies in the stellate ganglion were vasoactive intestinal polypeptide (VIP)-positive, and some were calcitonin gene-related peptide (CGRP)-positive. After transection of the cervical sympathetic trunk almost all ChAT- and NOS-positive fibers and most enkephalin- and CGRP-positive fibers disappeared in the superior cervical ganglion. The results suggest that most preganglionic fibers are cholinergic and that the majority of these in addition can release nitric oxide, some enkephalin, and a few CGRP. Acetylcholine, VIP, and CGRP are coexisting messenger molecules in some postganglionic sympathetic neurons.
Resumo:
Although the biological roots of aggression have been the source of intense debate, the precise physiological mechanisms responsible for aggression remain poorly understood. In most species, aggression is more common in males than females; thus, gonadal hormones have been a focal point for research in this field. Although gonadal hormones have been shown to influence the expression of aggression, in many cases aggression can continue after castration, indicating that testicular steroids are not completely essential for the expression of aggression. Recently, the mammalian neuropeptide arginine vasopressin (AVP) has been implicated in aggression. AVP plays a particularly important role in social behavior in monogamous mammals, such as prairie voles (Microtus ochrogaster). In turn, the effects of social experiences may be mediated by neuropeptides, including AVP. For example, sexually naïve prairie voles are rarely aggressive. However, 24 h after the onset of mating, males of this species become significantly aggressive toward strangers. Likewise, in adult male prairie voles, central (intracerebroventricular) injections of AVP can significantly increase intermale aggression, suggesting a role for AVP in the expression of postcopulatory aggression in adult male prairie voles. In this paper, we demonstrate that early postnatal exposure to AVP can have long-lasting effects on the tendency to show aggression, producing levels of aggression in sexually naïve, adult male prairie voles that are comparable to those levels observed after mating. Females showed less aggression and were less responsive to exogenous AVP, but the capacity of an AVP V1a receptor antagonist to block female aggression also implicates AVP in the development of female aggression.
Resumo:
Neuropeptides are slowly released from a limited pool of secretory vesicles. Despite decades of research, the composition of this pool has remained unknown. Endocrine cell studies support the hypothesis that a population of docked vesicles supports the first minutes of hormone release. However, it has been proposed that mobile cytoplasmic vesicles dominate the releasable neuropeptide pool. Here, to determine the cellular basis of the releasable pool, single green fluorescent protein-labeled secretory vesicles were visualized in neuronal growth cones with the use of an inducible construct or total internal reflection fluorescence microscopy. We report that vesicle movement follows the diffusion equation. Furthermore, rapidly moving secretory vesicles are used more efficiently than stationary vesicles near the plasma membrane to support stimulated release. Thus, randomly moving cytoplasmic vesicles participate in the first minutes of neuropeptide release. Importantly, the preferential recruitment of diffusing cytoplasmic secretory vesicles contributes to the characteristic slow kinetics and limited extent of sustained neuropeptide release.
Resumo:
We have asked whether comparative genome analysis and rat transgenesis can be used to identify functional regulatory domains in the gene locus encoding the hypothalamic neuropeptides oxytocin (OT) and vasopressin. Isotocin (IT) and vasotocin (VT) are the teleost homologues of these genes. A contiguous stretch of 46 kb spanning the Fugu IT-VT locus has been sequenced, and nine putative genes were found. Unlike the OT and vasopressin genes, which are closely linked in the mammalian genome in a tail-to-tail orientation, Fugu IT and VT genes are linked head to tail and are separated by five genes. When a cosmid containing the Fugu IT-VT locus was introduced into the rat genome, we found that the Fugu IT gene was specifically expressed in rat hypothalamic oxytocinergic neurons and mimicked the response of the endogenous OT gene to an osmotic stimulus. These data show that cis-acting elements and trans-acting factors mediating the cell-specific and physiological regulation of the OT and IT genes are conserved between mammals and fish. The combination of Fugu genome analysis and transgenesis in a mammal is a powerful tool for identifying and analyzing conserved vertebrate regulatory elements.
Resumo:
The neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT3) support the survival of subpopulations of primary sensory neurons with defined and distinct physiological characteristics. Only a few genes have been identified as being differentially expressed in these subpopulations, and not much is known about the nature of the molecules involved in the processing of sensory information in NGF-dependent nociceptive neurons or NT3-dependent proprioceptive neurons. We devised a simple dorsal root ganglion (DRG) explant culture system, allowing the selection of neuronal populations preferentially responsive to NGF or NT3. The reliability of this assay was first monitored by the differential expression of the NGF and NT3 receptors trkA and trkC, as well as that of neuropeptides and calcium-binding proteins. We then identified four differentially expressed sodium channels, two enriched in the NGF population and two others in the NT3 population. Finally, using an optimized RNA fingerprinting protocol, we identified 20 additional genes, all differentially expressed in DRG explants cultured with NGF or NT3. This approach thus allows the identification of large number of genes expressed in subpopulations of primary sensory neurons and opens the possibility of studying the molecular mechanisms of nociception and proprioception.
Resumo:
Orphanin FQ (OFQ, Nociceptin) is a recently discovered 17-amino acid neuropeptide that is structurally related to the opioid peptides but does not bind opioid receptors. OFQ has been proposed to act as an anti-opioid peptide, but its widespread sites of action in the brain suggest that it may have more general functions. Here we show that OFQ plays an important role in higher brain functions because it can act as an anxiolytic to attenuate the behavioral inhibition of animals acutely exposed to stressful/anxiogenic environmental conditions. OFQ anxiolytic-like effects were consistent across several behavioral paradigms generating different types of anxiety states in animals (light-dark preference, elevated plus-maze, exploratory behavior of an unfamiliar environment, pharmacological anxiogenesis, operant conflict) and were observed at low nonsedating doses (0.1–3 nmol, intracerebroventricular). Like conventional anxiolytics, OFQ interfered with regular sensorimotor function at high doses (>3 nmol). Our results show that an important role of OFQ is to act as an endogenous regulator of acute anxiety responses. OFQ, probably in concert with other major neuropeptides, exerts a modulatory role on the central integration of stressful stimuli and, thereby, may modulate anxiety states generated by acute stress.
Resumo:
Neuropeptides are implicated in many tumors, breast cancer (BC) included. Preprotachykinin-I (PPT-I) encodes multiple neuropeptides with pleiotropic functions such as neurotransmission, immune/hematopoietic modulation, angiogenesis, and mitogenesis. PPT-I is constitutively expressed in some tumors. In this study, we investigated a role for PPT-I and its receptors, neurokinin-1 (NK-1) and NK-2, in BC by using quantitative reverse transcription–PCR, ELISA, and in situ hybridization. Compared with normal mammary epithelial cells (n = 2) and benign breast biopsies (n = 21), BC cell lines (n = 7) and malignant breast biopsies (n = 25) showed increased expression of PPT-I and NK-1. NK-2 levels were high in normal and malignant cells. Specific NK-1 and NK-2 antagonists inhibited BC cell proliferation, suggesting autocrine and/or intercrine stimulation of BC cells by PPT-I peptides. NK-2 showed no effect on the proliferation of normal cells but mediated the proliferation of BC cells. Cytosolic extracts from malignant BC cells enhanced PPT-I translation whereas extracts from normal mammary epithelial cells caused no change. These enhancing effects may be protein-specific because a similar increase was observed for IL-6 translation and no effect was observed for IL-1α and stem cell factor. The data suggest that PPT-I peptides and their receptors may be important in BC development. Considering that PPT-I peptides are hematopoietic modulators, these results could be extended to understand early integration of BC cells in the bone marrow, a preferred site of metastasis. Molecular signaling transduced by PPT-I peptides and the mechanism that enhances translation of PPT-I mRNA could lead to innovative strategies for BC treatments and metastasis.
Resumo:
Substance P plays an important role in the transmission of pain-related information in the dorsal horn of the spinal cord. Recent immunocytochemical studies have shown a mismatch between the distribution of substance P and its receptor in the superficial laminae of the dorsal horn. Because such a mismatch was not observed by using classical radioligand binding studies, we decided to investigate further the issue of the relationship between substance P and its receptor by using an antibody raised against a portion of the carboxyl terminal of the neurokinin 1 receptor and a bispecific monoclonal antibodies against substance P and horseradish peroxidase. Light microscopy revealed a good correlation between the distributions of substance P and the neurokinin 1 receptor, both being localized with highest densities in lamina I and outer lamina II of the spinal dorsal horn. An ultrastructural double-labeling study, combining preembedding immunogold with enzyme-based immunocytochemistry, showed that most neurokinin 1 receptor immunoreactive dendrites were apposed by substance P containing boutons. A detailed quantitative analysis revealed that neurokinin 1 receptor immunoreactive dendrites received more appositions and synapses from substance P immunoreactive terminals than those not expressing the neurokinin 1 receptor. Such preferential innervation by substance P occurred in all superficial dorsal horn laminae even though neurokinin 1 receptor immunoreactive dendrites were a minority of the total number of dendritic profiles in the above laminae. These results suggest that, contrary to the belief that neuropeptides act in a diffuse manner at a considerable distance from their sites of release, substance P should act on profiles expressing the neurokinin 1 receptor at a short distance from its site of release.
Resumo:
Schistosome parasites adjust the physiology and behavior of their intermediate molluscan hosts to their own benefit. Previous studies demonstrated effects of the avian-schistosome Trichobilharzia ocellata on peptidergic centers in the brain of the intermediate snail host Lymnaea stagnalis. In particular, electrophysiological properties and peptide release of growth- and reproduction-controlling neuroendocrine neurons were affected. We now have examined the possibility that the expression of genes that control physiology and behavior of the host might be altered during parasitosis. A cDNA library of the brain of parasitized Lymnaea was constructed and differentially screened by using mRNA from the brain of both parasitized and nonparasitized snails. This screening yielded a number of clones, including previously identified cDNAs as well as novel neuronal transcripts, which appear to be differentially regulated. The majority of these transcripts encode neuropeptides. Reverse Northern blot analysis confirmed that neuropeptide gene expression is indeed affected in parasitized animals. Moreover, the expression profiles of 10 transcripts tested showed a differential, parasitic stage-specific regulation. Changes in expression could in many cases already be observed between 1.5 and 5 hr postinfection, suggesting that changes in gene expression are a direct effect of parasitosis. We suggest that direct regulation of neuropeptide gene expression is a strategy of parasites to induce physiological and behavioral changes in the host.
Resumo:
Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from whole brain poly(A)+ RNA that encodes a predicted 38-aa peptide, structurally related to the other known mammalian family members, CRF and Ucn. Ucn II binds selectively to the type 2 CRF receptor (CRF-R2), with no appreciable activity on CRF-R1. Transcripts encoding Ucn II are expressed in discrete regions of the rodent central nervous system, including stress-related cell groups in the hypothalamus (paraventricular and arcuate nuclei) and brainstem (locus coeruleus). Central administration of 1–10 μg of peptide elicits activational responses (Fos induction) preferentially within a core circuitry subserving autonomic and neuroendocrine regulation, but whose overall pattern does not broadly mimic the CRF-R2 distribution. Behaviorally, central Ucn II attenuates nighttime feeding, with a time course distinct from that seen in response to CRF. In contrast to CRF, however, central Ucn II failed to increase gross motor activity. These findings identify Ucn II as a new member of the CRF family of neuropeptides, which is expressed centrally and binds selectively to CRF-R2. Initial functional studies are consistent with Ucn II involvement in central autonomic and appetitive control, but not in generalized behavioral activation.
Resumo:
Secretory granules store neuropeptides and hormones and exhibit regulated exocytosis upon appropriate cellular stimulation. They are generated in the trans-Golgi network as immature secretory granules, short-lived vesicular intermediates, which undergo a complex and poorly understood maturation process. Due to their short half-life and low abundance, real-time studies of immature secretory granules have not been previously possible. We describe here a pulse/chase-like system based on the expression of a human chromogranin B-GFP fusion protein in neuroendocrine PC12 cells, which permits direct visualization of the budding of immature secretory granules and their dynamics during maturation. Live cell imaging revealed that newly formed immature secretory granules are transported in a direct and microtubule-dependent manner within a few seconds to the cell periphery. Our data suggest that the cooperative action of microtubules and actin filaments restricts immature secretory granules to the F-actin-rich cell cortex, where they move randomly and mature completely within a few hours. During this maturation period, secretory granules segregate into pools of different motility. In a late phase of maturation, 60% of secretory granules were found to be immobile and about half of these underwent F-actin-dependent tethering.
Resumo:
The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.
Resumo:
Homotypic fusion of immature secretory granules (ISGs) gives rise to mature secretory granules (MSGs), the storage compartment in endocrine and neuroendocrine cells for hormones and neuropeptides. With the use of a cell-free fusion assay, we investigated which soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) molecules are involved in the homotypic fusion of ISGs. Interestingly, the SNARE molecules mediating the exocytosis of MSGs in neuroendocrine cells, syntaxin 1, SNAP-25, and VAMP2, were not involved in homotypic ISG fusion. Instead, we have identified syntaxin 6 as a component of the core machinery responsible for homotypic ISG fusion. Subcellular fractionation studies and indirect immunofluorescence microscopy show that syntaxin 6 is sorted away during the maturation of ISGs to MSGs. Although, syntaxin 6 on ISG membranes is associated with SNAP-25 and SNAP-29/GS32, we could not find evidence that these target (t)-SNARE molecules are involved in homotypic ISG fusion. Nor could we find any involvement for the vesicle (v)-SNARE VAMP4, which is known to be associated with syntaxin 6. Importantly, we have shown that homotypic fusion requires the function of syntaxin 6 on both donor as well as acceptor membranes, which suggests that t–t-SNARE interactions, either direct or indirect, may be required during fusion of ISG membranes.