2 resultados para Nature in the Bible.
em National Center for Biotechnology Information - NCBI
Resumo:
The structural and functional organization of the Cct complex was addressed by genetic analyses of subunit interactions and catalytic cooperativity among five of the eight different essential subunits, Cct1p–Cct8p, in the yeast Saccharomyces cerevisiae. The cct1–1, cct2–3, and cct3–1 alleles, containing mutations at the conserved putative ATP-binding motif, GDGTT, are cold-sensitive, whereas single and multiple replacements of the corresponding motif in Cct6p are well tolerated by the cell. We demonstrated herein that cct6–3 (L19S), but not the parolog cct1–5 (R26I), specifically suppresses the cct1–1, cct2–3, and cct3–1 alleles, and that this suppression can be modulated by mutations in a putative phosphorylation motif, RXS, and the putative ATP-binding pocket of Cct6p. Our results suggest that the Cct ring is comprised of a single hetero-oligomer containing eight subunits of differential functional hierarchy, in which catalytic cooperativity of ATP-binding/hydrolysis takes place in a sequential manner different from the concerted cooperativity proposed for GroEL.
Resumo:
Acute promyelocytic leukemia (APL) is associated with chromosomal translocations always involving the RARα gene, which variably fuses to one of several distinct loci, including PML or PLZF (X genes) in t(15;17) or t(11;17), respectively. APL in patients harboring t(15;17) responds well to retinoic acid (RA) treatment and chemotherapy, whereas t(11;17) APL responds poorly to both treatments, thus defining a distinct syndrome. Here, we show that RA, As2O3, and RA + As2O3 prolonged survival in either leukemic PML-RARα transgenic mice or nude mice transplanted with PML-RARα leukemic cells. RA + As2O3 prolonged survival compared with treatment with either drug alone. In contrast, neither in PLZF-RARα transgenic mice nor in nude mice transplanted with PLZF-RARα cells did any of the three regimens induce complete disease remission. Unexpectedly, therapeutic doses of RA and RA + As2O3 can induce, both in vivo and in vitro, the degradation of either PML-RARα or PLZF-RARα proteins, suggesting that the maintenance of the leukemic phenotype depends on the continuous presence of the former, but not the latter. Our findings lead to three major conclusions with relevant therapeutic implications: (i) the X-RARα oncoprotein directly determines response to treatment and plays a distinct role in the maintenance of the malignant phenotype; (ii) As2O3 and/or As2O3 + RA combination may be beneficial for the treatment of t(15;17) APL but not for t(11;17) APL; and (iii) therapeutic strategies aimed solely at degrading the X-RARα oncoprotein may not be effective in t(11;17) APL.