69 resultados para Natriuretic peptide receptor 1
em National Center for Biotechnology Information - NCBI
Resumo:
Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.
Resumo:
Dephosphorylation of the natriuretic peptide receptor-A (NPR-A) is hypothesized to mediate its desensitization in response to atrial natriuretic peptide (ANP) binding. Recently, we identified six phosphorylation sites within the kinase homology domain of NPR-A and determined that the conversion of these residues to alanine abolished the ability of the receptor to be phosphorylated or to be activated by ANP and ATP. In an attempt to generate a form of NPR-A that mimics a fully phosphorylated receptor but that is resistant to dephosphorylation, we engineered a receptor variant (NPR-A-6E) containing glutamate substitutions at all six phosphorylation sites. Consistent with the known ability of negatively charged glutamate residues to substitute functionally, in some cases, for phosphorylated residues, we found that NPR-A-6E was activated 10-fold by ANP and ATP. As determined by guanylyl cyclase assays, the hormone-stimulated activity of the wild-type receptor declined over time in membrane preparations in vitro, and this loss was blocked by the serine/threonine protein phosphatase inhibitor microcystin. In contrast, the activity of NPR-A-6E was more linear with time and was unaffected by microcystin. The nonhydrolyzable ATP analogue adenosine 5′-(β,γ-imino)-triphosphate was half as effective as ATP in stimulating the wild-type receptor but was equally as potent in stimulating NPR-A-6E, suggesting that ATP is required to keep the wild-type but not 6E variant phosphorylated. Finally, the desensitization of NPR-A-6E in whole cells was markedly blunted compared with that of the wild-type receptor, consistent with its inability to shed the negative charge from its kinase homology domain via dephosphorylation. These data provide the first direct test of the requirement for dephosphorylation in guanylyl cyclase desensitization and they indicate that it is an essential component of this process.
Resumo:
Guanylyl cyclase-A (NPR-A; GC-A) is the major and possibly the only receptor for atrial natriuretic peptide (ANP) or B-type natriuretic peptide. Although mice deficient in GC-A display an elevated blood pressure, the resultant cardiac hypertrophy is much greater than in other mouse models of hypertension. Here we overproduce GC-A in the cardiac myocytes of wild-type or GC-A null animals. Introduction of the GC-A transgene did not alter blood pressure or heart rate as a function of genotype. Cardiac myocyte size was larger (approximately 20%) in GC-A null than in wild-type animals. However, introduction of the GC-A transgene reduced cardiac myocyte size in both wild-type and null mice. Coincident with the reduction in myocyte size, both ANP mRNA and ANP content were significantly reduced by overexpression of GC-A, and this reduction was independent of genotype. This genetic model, therefore, separates a regulation of cardiac myocyte size by blood pressure from local regulation by a GC-mediated pathway.
Resumo:
Previous studies indicated that the central nervous system induces release of the cardiac hormone atrial natriuretic peptide (ANP) by release of oxytocin from the neurohypophysis. The presence of specific transcripts for the oxytocin receptor was demonstrated in all chambers of the heart by amplification of cDNA by the PCR using specific oligonucleotide primers. Oxytocin receptor mRNA content in the heart is 10 times lower than in the uterus of female rats. Oxytocin receptor transcripts were demonstrated by in situ hybridization in atrial and ventricular sections and confirmed by competitive binding assay using frozen heart sections. Perfusion of female rat hearts for 25 min with Krebs–Henseleit buffer resulted in nearly constant release of ANP. Addition of oxytocin (10−6 M) significantly stimulated ANP release, and an oxytocin receptor antagonist (10−7 and 10−6 M) caused dose-related inhibition of oxytocin-induced ANP release and in the last few minutes of perfusion decreased ANP release below that in control hearts, suggesting that intracardiac oxytocin stimulates ANP release. In contrast, brain natriuretic peptide release was unaltered by oxytocin. During perfusion, heart rate decreased gradually and it was further decreased significantly by oxytocin (10−6 M). This decrease was totally reversed by the oxytocin antagonist (10−6 M) indicating that oxytocin released ANP that directly slowed the heart, probably by release of cyclic GMP. The results indicate that oxytocin receptors mediate the action of oxytocin to release ANP, which slows the heart and reduces its force of contraction to produce a rapid reduction in circulating blood volume.
Resumo:
The irreversible proteolytic mechanism by which protease-activated receptor-1 (PAR1), the G protein-coupled receptor (GPCR) for thrombin, is activated raises the question of how it is shut off. Like classic GPCRs, activated PAR1 is rapidly phosphorylated and internalized, but unlike classic GPCRs, which recycle, internalized PAR1 is sorted to lysosomes. A chimeric PAR1 bearing the substance P receptor’s cytoplasmic carboxyl tail sequestered and recycled like wild-type substance P receptor. In cells expressing this chimera, signaling in response to the PAR1-activating peptide SFLLRN ceased as expected upon removal of this agonist. Strikingly, however, when the chimera was activated proteolytically by thrombin, signaling persisted even after thrombin was removed. This persistent signaling was apparently due to “resignaling” by previously activated receptors that had internalized and recycled back to the cell surface. Thus the cytoplasmic carboxyl tail of PAR1 specifies an intracellular sorting pattern that is linked to its signaling properties. In striking contrast to most GPCRs, sorting of activated PAR1 to lysosomes rather than recycling is critical for terminating PAR1 signaling—a trafficking solution to a signaling problem.
Resumo:
In both normally hydrated and volume-expanded rats, there was a biphasic effect of corticotropin-releasing hormone (CRH) (1–10 μg, i.v.) on renal function. Within the first hour, CRH caused antidiuresis, antinatriuresis, and antikaliuresis together with reduction in urinary cGMP output that, in the fourth hour, were replaced by diuresis, natriuresis, and kaliuresis accompanied by increased cGMP output. Plasma arginine vasopressin (AVP) concentrations increased significantly within 5 min, reached a peak at 15 min, and declined by 30 min to still-elevated values maintained for 180 min. Changes in plasma atrial natriuretic peptide (ANP) were the mirror image of those of AVP. Plasma ANP levels were correlated with decreased ANP in the left ventricle at 30 min and increased ANP mRNA in the right atrium at 180 min. All urinary changes were reversed by a potent AVP type 2 receptor (V2R) antagonist. Control 0.9% NaCl injections evoked an immediate increase in blood pressure and heart rate measured by telemetry within 3–5 min. This elevation of blood pressure was markedly inhibited by CRH (5 μg). We hypothesize that the effects are mediated by rapid, direct vasodilation induced by CRH that decreases baroreceptor input to the brain stem, leading to a rapid release of AVP that induces the antidiuresis by direct action on the V2Rs in the kidney. Simultaneously, acting on V2Rs in the heart, AVP inhibits ANP release and synthesis, resulting in a decrease in renal cGMP output that is responsible for the antinatriuretic and antikaliuretic effects.
Resumo:
The cysteinyl leukotrienes (cys-LTs) LTC4, LTD4, and LTE4 are a class of peptide-conjugated lipids formed from arachidonic acid and released during activation of mast cells (MCs). We now report that human cord-blood-derived MCs (hMCs) express the CysLT1 receptor, which responds not only to inflammation-derived cys-LTs, but also to a pyrimidinergic ligand, UDP. hMCs express both CysLT1 protein and transcript, and respond to LTC4, LTD4, and UDP with concentration-dependent calcium fluxes, each of which is blocked by a competitive CysLT1 receptor antagonist, MK571. Stably transfected Chinese hamster ovary cells expressing the CysLT1 receptor also exhibit MK571-sensitive calcium flux to all three agonists. Both hMCs and CysLT1 transfectants stimulated with UDP are desensitized to LTC4, but only partially to LTD4. Priming of hMCs with IL-4 for 5 days enhances their sensitivity to each agonist, but preferentially lowers their threshold for activation by LTC4 and UDP (≈3 log10-fold shifts in dose-response for each agonist) over LTD4 (1.3 log10-fold shift), without altering CysLT1 receptor mRNA or surface protein expression, implying the likely induction of a second receptor with CysLT1-like dual ligand specificity. hMCs thus express the CysLT1 receptor, and possibly a closely related IL-4-inducible receptor, which mediate dual activation responses to cys-LTs and UDP, providing an apparent intersection linking the inflammatory and neurogenic elements of bronchial asthma.
Resumo:
Recent studies have demonstrated the existence of a soluble fibroblast growth factor (FGF) receptor type 1 (FGFR1) extracellular domain in the circulation and in vascular basement membranes. However, the process of FGFR1 ectodomain release from the plasma membrane is not known. Here we report that the 72-kDa gelatinase A (matrix metalloproteinase type 2, MMP2) can hydrolyze the Val368-Met369 peptide bond of the FGFR1 ectodomain, eight amino acids upstream of the transmembrane domain, thus releasing the entire extracellular domain. Similar results were obtained regardless of whether FGF was first bound to the receptor or not. The action of MMP2 abolished binding of FGF to an immobilized recombinant FGFR1 ectodomain fusion protein and to Chinese hamster ovary cells overexpressing FGFR1 The released recombinant FGFR1 ectodomain was able to bind FGF after MMP2 cleavage, suggesting that the cleaved soluble receptor maintained its FGF binding capacity. The activity of MMP2 could not be reproduced by the 92-kDa gelatinase B (MMP9) and was inhibited by tissue inhibitor of metalloproteinase type 2. These studies demonstrate that FGFR1 may be a specific target for MMP2 on the cell surface, yielding a soluble FGF receptor that may modulate the mitogenic and angiogenic activities of FGF.
Resumo:
Our previous studies have shown that stimulation of the anterior ventral third ventricular region increases atrial natriuretic peptide (ANP) release, whereas lesions of this structure, the median eminence, or removal of the neural lobe of the pituitary block ANP release induced by blood volume expansion (BVE). These results indicate that participation of the central nervous system is crucial in these responses, possibly through mediation by neurohypophysial hormones. In the present research we investigated the possible role of oxytocin, one of the two principal neurohypophysial hormones, in the mediation of ANP release. Oxytocin (1-10 nmol) injected i.p. caused significant, dose-dependent increases in urinary osmolality, natriuresis, and kaliuresis. A delayed antidiuretic effect was also observed. Plasma ANP concentrations increased nearly 4-fold (P < 0.01) 20 min after i.p. oxytocin (10 nmol), but there was no change in plasma ANP values in control rats. When oxytocin (1 or 10 nmol) was injected i.v., it also induced a dose-related increase in plasma ANP at 5 min (P < 0.001). BVE by intra-atrial injection of isotonic saline induced a rapid (5 min postinjection) increase in plasma oxytocin and ANP concentrations and a concomitant decrease in plasma arginine vasopressin concentration. Results were similar with hypertonic volume expansion, except that this induced a transient (5 min) increase in plasma arginine vasopressin. The findings are consistent with the hypothesis that baroreceptor activation of the central nervous system by BVE stimulates the release of oxytocin from the neurohypophysis. This oxytocin then circulates to the right atrium to induce release of ANP, which circulates to the kidney and induces natriuresis and diuresis, which restore body fluid volume to normal levels.
Resumo:
Tyk2 belongs to the Janus kinase (JAK) family of receptor associated tyrosine kinases, characterized by a large N-terminal region, a kinase-like domain and a tyrosine kinase domain. It was previously shown that Tyk2 contributes to interferon-α (IFN-α) signaling not only catalytically, but also as an essential intracellular component of the receptor complex, being required for high affinity binding of IFN-α. For this function the tyrosine kinase domain was found to be dispensable. Here, it is shown that mutant cells lacking Tyk2 have significantly reduced IFN-α receptor 1 (IFNAR1) protein level, whereas the mRNA level is unaltered. Expression of the N-terminal region of Tyk2 in these cells reconstituted wild-type IFNAR1 level, but did not restore the binding activity of the receptor. Studies of mutant Tyk2 forms deleted at the N terminus indicated that the integrity of the N-terminal region is required to sustain IFNAR1. These studies also showed that the N-terminal region does not directly modulate the basal autophosphorylation activity of Tyk2, but it is required for efficient in vitro IFNAR1 phosphorylation and for rendering the enzyme activatable by IFN-α. Overall, these results indicate that distinct Tyk2 domains provide different functions to the receptor complex: the N-terminal region sustains IFNAR1 level, whereas the kinase-like domain provides a function toward high affinity ligand binding.
Resumo:
During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (−/−) cells, and analyzed cell–cell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.
Resumo:
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.
Resumo:
Fibroblast growth factors (FGF) 1 and 2 and their tyrosine kinase receptor (FGFR) are present throughout the adult retina. FGFs are potential mitogens, but adult retinal cells are maintained in a nonproliferative state unless the retina is damaged. Our work aims to find a modulator of FGF signaling in normal and pathological retina. We identified and sequenced a truncated FGFR1 form from rat retina generated by the use of selective polyadenylation sites. This 70-kDa form of soluble extracellular FGFR1 (SR1) was distributed mainly localized in the inner nuclear layer of the retina, whereas the full-length FGFR1 form was detected in the retinal Muller glial cells. FGF2 and FGFR1 mRNA levels greatly increased in light-induced retinal degeneration. FGFR1 was detected in the radial fibers of activated retinal Muller glial cells. In contrast, SR1 mRNA synthesis followed a biphasic pattern of down- and up-regulation, and anti-SR1 staining was intense in retinal pigmented epithelial cells. The synthesis of SR1 and FGFR1 specifically and independently regulated in normal and degenerating retina suggests that changes in the proportion of various FGFR forms may control the bioavailability of FGFs and thus their potential as neurotrophic factors. This was demonstrated in vivo during retinal degeneration when recombinant SR1 inhibited the neurotrophic activity of exogenous FGF2 and increased damaging effects of light by inhibiting endogenous FGF. This study highlights the significance of the generation of SR1 in normal and pathological conditions.
Resumo:
During oocyte maturation in Xenopus, previously quiescent maternal mRNAs are translationally activated at specific times. We hypothesized that the translational recruitment of individual messages is triggered by particular cellular events and investigated the potential for known effectors of the meiotic cell cycle to activate the translation of the FGF receptor-1 (XFGFR) maternal mRNA. We found that both c-mos and cdc2 activate the translation of XFGFR. However, although oocytes matured by injection of recombinant cdc2/cyclin B translate normal levels of XFGFR protein, c-mos depletion reduces the level of XFGFR protein induced by cdc2/cyclin B injection. In oocytes blocked for cdc2 activity, injection of mos RNA induced low levels of XFGFR protein, independent of MAPK activity. Through the use of injected reporter RNAs, we show that the XFGFR 3′ untranslated region inhibitory element is completely derepressed by cdc2 alone. In addition, we identified a new inhibitory element through which both mos and cdc2 activate translation. We found that cdc2 derepresses translation in the absence of polyadenylation, whereas mos requires poly(A) extension to activate XFGFR translation. Our results demonstrate that mos and cdc2, in addition to functioning as key regulators of the meiotic cell cycle, cooperate in the translational activation of a specific maternal mRNA during oocyte maturation.
Resumo:
One crucial role of endothelium is to keep the innermost surface of a blood vessel antithrombotic. However, the endothelium also expresses prothrombotic molecules in response to various stimuli. The balance between the antithrombotic and prothrombotic nature of the endothelium is lost under certain conditions. During atherosclerosis, the attachment of platelets to the vessel surface has been suggested to promote the proliferation of smooth muscle cells and intimal thickening as well as to affect the prognosis of the disease directly through myocardial infarction and stroke. Dysfunctional endothelium, which is often a result of the action of oxidized low-density lipoprotein (OxLDL), tends to be more procoagulant and adhesive to platelets. Herein, we sought the possibility that the endothelial lectin-like OxLDL receptor-1 (LOX-1) is involved in the platelet–endothelium interaction and hence directly in endothelial dysfunction. LOX-1 indeed worked as an adhesion molecule for platelets. The binding of platelets was inhibited by a phosphatidylserine-binding protein, annexin V, and enhanced by agonists for platelets. These results suggest that negative phospholipids exposed on activation on the surface of platelets are the epitopes for LOX-1. Notably, the binding of platelets to LOX-1 enhanced the release of endothelin-1 from endothelial cells, supporting the induction of endothelial dysfunction, which would, in turn, promote the atherogenic process. LOX-1 may initiate and promote atherosclerosis, binding not only OxLDL but also platelets.