6 resultados para NUP98-HOXA9

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NUP98 gene encodes precursor proteins that generate two nucleoplasmically oriented nucleoporins, NUP98 and NUP96. By using gene targeting, we have selectively disrupted the murine NUP98 protein, leaving intact the expression and localization of NUP96. We show that NUP98 is essential for mouse gastrulation, a developmental stage that is associated with rapid cell proliferation, but dispensable for basal cell growth. NUP98−/− cells had an intact nuclear envelope with a normal number of embedded nuclear pore complexes. Typically, NUP98-deficient cells contained on average approximately 5-fold more cytoplasmic annulate lamellae than control cells. We found that a set of cytoplasmically oriented nucleoporins, including NUP358, NUP214, NUP88, and p62, assembled inefficiently into nuclear pores of NUP98−/− cells. Instead, these nucleoporins were prominently associated with the annulate lamellae. By contrast, a group of nucleoplasmically oriented nucleoporins, including NUP153, NUP50, NUP96, and NUP93, had no affinity for annulate lamellae and assembled normally into nuclear pores. Mutant pores were significantly impaired in transport receptor-mediated docking of proteins with a nuclear localization signal or M9 import signal and showed weak nuclear import of such substrates. In contrast, the ability of mutant pores to import ribosomal protein L23a and spliceosome protein U1A appeared intact. These observations show that NUP98 disruption selectively impairs discrete protein import pathways and support the idea that transport of distinct import complexes through the nuclear pore complex is mediated by specific subsets of nucleoporins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Nup98 gene codes for several alternatively spliced protein precursors. Two in vitro translated and autoproteolytically cleaved precursors yielded heterodimers of Nup98-6kDa peptide and Nup98-Nup96. TPR (translocated promoter region) is a protein that forms filamentous structures extending from nuclear pore complexes (NPCs) to intranuclear sites. We found that in vitro translated TPR bound to in vitro translated Nup98 and, via Nup98, to Nup96. Double-immunofluorescence microscopy with antibodies to TPR and Nup98 showed colocalization. In confocal sections the nucleolus itself was only weakly stained but there was intensive perinucleolar staining. Striking spike-like structures emanated from this perinucleolar ring and attenuated into thinner structures as they extended to the nuclear periphery. This characteristic staining pattern of the TPR network was considerably enhanced when a myc-tagged pyruvate kinase-6kDa fusion protein was overexpressed in HeLa cells. Double-immunoelectron microscopy of these cells using anti-myc and anti-TPR antibodies and secondary gold-coupled antibodies yielded row-like arrangements of gold particles. Taken together, the immunolocalization data support previous electron microscopical data, suggesting that TPR forms filaments that extend from the NPC to the nucleolus. We discuss the possible implications of the association of Nup98 with this intranuclear TPR network for an intranuclear phase of transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using binding assays, we discovered an interaction between karyopherin α2 and the nucleoporin Nup153 and mapped their interacting domains. We also isolated a 15-kDa tryptic fragment of karyopherin β1, termed β1*, that contains a determinant for binding to the peptide repeat containing nucleoporin Nup98. In an in vitro assay in which export of endogenous nuclear karyopherin α from nuclei of digitonin-permeabilized cells was quantitatively monitored by indirect immunofluorescence with anti-karyopherin α antibodies, we found that karyopherin α export was stimulated by added GTPase Ran, required GTP hydrolysis, and was inhibited by wheat germ agglutinin. RanGTP-mediated export of karyopherin α was inhibited by peptides representing the interacting domains of Nup153 and karyopherin α2, indicating that the binding reactions detected in vitro are physiologically relevant and verifying our mapping data. Moreover, β1*, although it inhibited import, did not inhibit export of karyopherin α. Hence, karyopherin α import into and export from nuclei are asymmetric processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have cloned and sequenced cDNA for human karyopherin β2, also known as transportin. In a solution binding assay, recombinant β2 bound directly to recombinant nuclear mRNA-binding protein A1. Binding was inhibited by a peptide representing A1’s previously characterized M9 nuclear localization sequence (NLS), but not by a peptide representing a classical NLS. As previously shown for karyopherin β1, karyopherin β2 bound to several nucleoporins containing characteristic peptide repeat motifs. In a solution binding assay, both β1 and β2 competed with each other for binding to immobilized repeat nucleoporin Nup98. In digitonin-permeabilized cells, β2 was able to dock A1 at the nuclear rim and to import it into the nucleoplasm. At low concentrations of β2, there was no stimulation of import by the exogenous addition of the GTPase Ran. However, at higher concentrations of β2 there was marked stimulation of import by Ran. Import was inhibited by the nonhydrolyzable GTP analog guanylyl imidodiphosphate by a Ran mutant that is unable to hydrolyze GTP and also by wheat germ agglutinin. Consistent with the solution binding results, karyopherin β2 inhibited karyopherin α/β1-mediated import of a classical NLS containing substrate and, vice versa, β1 inhibited β2-mediated import of A1 substrate, suggesting that the two import pathways merge at the level of docking of β1 and β2 to repeat nucleoporins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fundamental process of nucleocytoplasmic transport takes place through the nuclear pore. Peripheral pore structures are presumably poised to interact with transport receptors and their cargo as these receptor complexes first encounter the pore. One such peripheral structure likely to play an important role in nuclear export is the basket structure located on the nuclear side of the pore. At present, Nup153 is the only nucleoporin known to localize to the surface of this basket, suggesting that Nup153 is potentially one of the first pore components an RNA or protein encounters during export. In this study, anti-Nup153 antibodies were used to probe the role of Nup153 in nuclear export in Xenopus oocytes. We found that Nup153 antibodies block three major classes of RNA export, that of snRNA, mRNA, and 5S rRNA. Nup153 antibodies also block the NES protein export pathway, specifically the export of the HIV Rev protein, as well as Rev-dependent RNA export. Not all export was blocked; Nup153 antibodies did not impede the export of tRNA or the recycling of importin β to the cytoplasm. The specific antibodies used here also did not affect nuclear import, whether mediated by importin α/β or by transportin. Overall, the results indicate that Nup153 is crucial to multiple classes of RNA and protein export, being involved at a vital juncture point in their export pathways. This juncture point appears to be one that is bypassed by tRNA during its export. We asked whether a physical interaction between RNA and Nup153 could be observed, using homoribopolymers as sequence-independent probes for interaction. Nup153, unlike four other nucleoporins including Nup98, associated strongly with poly(G) and significantly with poly(U). Thus, Nup153 is unique among the nucleoporins tested in its ability to interact with RNA and must do so either directly or indirectly through an adaptor protein. These results suggest a unique mechanistic role for Nup153 in the export of multiple cargos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although only 44% identical to human karyopherin alpha 1, human karyopherin alpha 2 (Rch1 protein) substituted for human karyopherin alpha 1 (hSRP-1/NPI-1) in recognizing a standard nuclear localization sequence and karyopherin beta-dependent targeting to the nuclear envelope of digitonin-permeabilized cells. By immunofluorescence microscopy of methanol-fixed cells, karyopherin beta was localized to the cytoplasm and the nuclear envelope and was absent from the nuclear interior. Digitonin permeabilization of buffalo rat liver cells depleted their endogenous karyopherin beta. Recombinant karyopherin beta can bind directly to the nuclear envelope of digitonin-permeabilized cells at 0 degree C (docking reaction). In contrast, recombinant karyopherin alpha 1 or alpha 2 did not bind unless karyopherin beta was present. Likewise, in an import reaction (at 20 degrees C) with all recombinant transport factors (karyopherin alpha 1 or alpha 2, karyopherin beta, Ran, and p10) import depended on karyopherin beta. Localization of the exogenously added transport factors after a 30-min import reaction showed karyopherin beta at the nuclear envelope and karyopherin alpha 1 or alpha 2, Ran, and p10 in the nuclear interior. In an overlay assay with SDS/PAGE-resolved and nitrocellulose-transferred proteins of the nuclear envelope, 35S-labeled karyopherin beta bound to at least four peptide repeat-containing nucleoporins--Nup358, Nup214, Nup153, and Nup98.