9 resultados para NT-3

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In addition to well established trophic functions, neurotrophins acutely affect neurotransmitter secretion from the presynaptic nerve terminal, influence synaptic development, and may serve as selective retrograde messengers that regulate synaptic efficacy. The crucial question related to the mechanisms of neurotrophin-mediated signaling is whether acute effects of neurotrophins are spatially restricted to the activated synapses. Here we have used a local perfusion technique for local delivery of neurotrophin-3 (NT-3) to various regions of developing Xenopus embryo neurons in culture. Within minutes after a focal exposure of a soma or a small (≈30 μm in length) axonal segment to NT-3, we observed an increase in the spontaneous neurotransmitter secretion from the presynaptic nerve terminals located ≈300–400 μm away from the site of NT-3 application. Secretory activity along the axonal shaft was not affected. Our findings suggest that the NT-3-mediated signal may rapidly travel through neuronal cytoplasm over unexpectedly long distances and modulate neurotransmitter release specifically at the presynaptic nerve terminals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have generated null mutant mice that lack expression of all isoforms encoded by the trkC locus. These mice display a behavioral phenotype characterized by a loss of proprioceptive neurons. Neuronal counts of sensory ganglia in the trkC mutant mice reveal less severe losses than those in NT-3 null mutant mice, strongly suggesting that NT-3, in vivo, may signal through receptors other than trkC. Mice lacking either NT-3 or all trkC receptor isoforms die in the early postnatal period. Histological examination of trkC-deficient mice reveals severe cardiac defects such as atrial and ventricular septal defects, and valvular defects including pulmonic stenosis. Formation of these structures during development is dependent on cardiac neural crest function. The similarities in cardiac defects observed in the trkC and NT-3 null mutant mice indicate that the trkC receptor mediates most NT-3 effects on the cardiac neural crest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The translocation of specific mRNAs to dendrites and their potential for locally regulated translation are likely to serve as an effector in neuronal plasticity. Whether translation in dendrites is regulated by delivery of the RNA to sites of plasticity or a stationary pool of localized RNA undergoes enhanced translational efficiency is not clear. We show that RNA can translocate into dendrites in response to NT-3. RNA granules were visualized in cultured rat cortical neurons using the dye SYTO 14, which labels poly-ribosome complexes. Long before the morphological effects of NT-3 appeared, there was increased distal translocation of labeled complexes. This effect was blocked by K252a, a potent inhibitor of tyrosine kinase receptors. Therefore, neurons can utilize extracellular signals to alter the distribution of protein synthetic machinery via the active transport of RNA granules.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We analyzed the developmental regulation and role of the neurotrophins during metanephric kidney morphogenesis. RNase protection assay revealed the presence of nerve growth factor, neurotrophin 3 (NT-3), and brain-derived neurotrophic factor mRNAs and the regulation of their expression during embryonic development of rat metanephros. NT-3 induced differentiation (neurite outgrowth) and survival (inhibition of apoptosis) of the neuronal precursors in cultured nephrogenic mesenchymes and neuronal differentiation in cultured whole kidneys, whereas NT-4/5, brain-derived neurotrophic factor, and nerve growth factor were without effect. The neurotrophins did not trigger tubular differentiation of isolated nephrogenic cells, which underwent apoptosis when cultured with or without the neurotrophins. NT-3 is thus an inducer of differentiation and a survival factor for renal neuronal cells, but none of the neurotrophins is a morphogen in kidney tubule induction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin expression in the locus coeruleus (LC), which modulates many of the behavioral and physiological responses to stress and has been implicated in mood disorders. Using in situ hybridization, we demonstrate that neurotrophin 3 (NT-3) is expressed in noradrenergic neurons of the LC. Recurrent, but not acute, immobilization stress increased NT-3 mRNA levels in the LC. In contrast, chronic treatment with antidepressants decreased NT-3 mRNA levels. The effect occurred in response to antidepressants that blocked norepinephrine uptake, whereas serotonin-specific reuptake inhibitors did not alter NT-3 levels. Electroconvulsive seizures also decreased NT-3 expression in the LC as well as the hippocampus. Ntrk3 (neurotrophic tyrosine kinase receptor type 3; formerly TrkC), the receptor for NT-3, is expressed in the LC, but its mRNA levels did not change with stress or antidepressant treatments. Because, NT-3 is known to be trophic for LC neurons, our results raise the possibility that some of the effects of stress and antidepressants on LC function and plasticity could be mediated through NT-3. Moreover, the coexpression of NT-3 and its receptor in the LC suggests the potential for autocrine mechanisms of action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient 3′-end processing of cell cycle-regulated mammalian histone premessenger RNAs (pre-mRNAs) requires an upstream stem–loop and a histone downstream element (HDE) that base pairs with the U7 small ribonuclearprotein. Insertions between these elements have two effects: the site of cleavage moves in concert with the HDE and processing efficiency declines. We used Xenopus oocytes to ask whether compensatory length insertions in the human U7 RNA could restore the fidelity and efficiency of processing of mouse histone insertion pre-mRNAs. An insertion of 5 nt into U7 RNA that extends its complementary to the HDE compensated for both defects in processing of a 5-nt insertion substrate; a noncomplementary insertion into U7 did not. Yet, the noncomplementary insertion mutant U7 was shown to be active on insertion substrates further mutated to allow base pairing. Our results suggest that the histone pre-mRNA becomes rigidified upstream of its HDE, allowing the bound U7 small ribonucleoprotein to measure from the HDE to the cleavage site. Such a mechanism may be common to other RNA measuring systems. To our knowledge, this is the first demonstration of length suppression in an RNA processing system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large sections of the 3′ untranslated region (UTR) of hepatitis C virus (HCV) were deleted from an infectious cDNA clone, and the RNA transcripts from seven deletion mutants were tested sequentially for infectivity in a chimpanzee. Mutants lacking all or part of the 3′ terminal conserved region or the poly(U–UC) region were unable to infect the chimpanzee, indicating that both regions are critical for infectivity in vivo. However, the third region, the variable region, was able to tolerate a deletion that destroyed the two putative stem–loop structures within this region. Mutant VR-24 containing a deletion of the proximal 24 nt of the variable region of the 3′ UTR was viable in the chimpanzee and seemed to replicate as well as the undeleted parent virus. The chimpanzee became viremic 1 week after inoculation with mutant VR-24, and the HCV genome titer increased over time during the early acute infection. Therefore, the poly(U–UC) region and the conserved region, but not the variable region, of the 3′ UTR seem to be critical for in vivo infectivity of HCV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV type 1 (HIV-1) specifically uses host cell tRNALys-3 as a primer for reverse transcription. The 3′ 18 nucleotides of this tRNA are complementary to a region on the HIV RNA genome known as the primer binding site (PBS). HIV-1 has a strong preference for maintaining a lysine-specific PBS in vivo, and viral genomes with mutated PBS sequences quickly revert to be complementary to tRNALys-3. To investigate the mechanism for the observed PBS reversion events in vitro, we examined the capability of the nucleocapsid protein (NC) to anneal various tRNA primer sequences onto either complementary or noncomplementary PBSs. We show that NC can anneal different full-length tRNAs onto viral RNA transcripts derived from the HIV-1 MAL or HXB2 isolates, provided that the PBS is complementary to the tRNA used. In contrast, NC promotes specific annealing of only tRNALys-3 onto an RNA template (HXB2) whose PBS sequence has been mutated to be complementary to the 3′ 18 nt of human tRNAPro. Moreover, HIV-1 reverse transcriptase extends this binary complex from the proline-specific PBS. The formation of the noncomplementary binary complex does not occur when a chimeric tRNALys/Pro containing proline-specific D and anticodon domains is used as the primer. Thus, elements outside the acceptor-TΨC domains of tRNALys-3 play an important role in preferential primer use in vitro. Our results support the hypothesis that mutant PBS reversion is a result of tRNALys-3 annealing onto and extension from a PBS that specifies an alternate host cell tRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A typical G-rich telomeric DNA strand, which runs 5′→3′ toward the chromosome ends, protrudes by several nucleotides in lower eukaryotes. In human chromosomes long G-rich 3′-overhangs have been found. Apart from the standard G-rich tail, several non-canonical terminal structures have been proposed. However, the mechanism of long-tail formation, the presence and the role of these structures in telomere maintenance or shortening are not completely understood. In a search for a simple method to accurately measure the 3′-overhang we have established a protocol based on the ligation of telomeric oligonucleotide hybridized to non-denatured DNA under stringent conditions (oligonucleotide ligation assay with telomeric repeat oligonucleotide). This method enabled us to detect a large proportion of G-rich single-stranded telomeric DNA that was as short as 24 nt. Nevertheless, we showed G-tails longer than 400 nt. In all tested cells the lengths ranging from 108 to 270 nt represented only 37% of the whole molecule population, while 56–62% were <90 nt. Our protocol provides a simple and sensitive method for measuring the length of naturally occurring unpaired repeated DNA.