3 resultados para NORMATIVE COMMITMENT

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for nervous system candidates that could directly induce T cell cytokine secretion, I tested four neuropeptides (NPs): somatostatin, calcitonin gene-related peptide, neuropeptide Y, and substance P. Comparing neuropeptide-driven versus classical antigen-driven cytokine secretion from T helper cells Th0, Th1, and Th2 autoimmune-related T cell populations, I show that the tested NPs, in the absence of any additional factors, directly induce a marked secretion of cytokines [interleukin 2 (IL-2), interferon-γ, IL-4, and IL-10) from T cells. Furthermore, NPs drive distinct Th1 and Th2 populations to a “forbidden” cytokine secretion: secretion of Th2 cytokines from a Th1 T cell line and vice versa. Such a phenomenon cannot be induced by classical antigenic stimulation. My study suggests that the nervous system, through NPs interacting with their specific T cell-expressed receptors, can lead to the secretion of both typical and atypical cytokines, to the breakdown of the commitment to a distinct Th phenotype, and a potentially altered function and destiny of T cells in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal mouse marrow cells were stimulated by stem cell factor (SCF) to form dispersed or multicentric blast colonies containing progenitor cells committed to various hematopoietic lineages. Combination of the eosinophil-specific regulator interleukin 5 with SCF increased the frequency of colonies containing eosinophil-committed progenitor cells with multicentric but not dispersed blast colonies. Combination of thrombopoietin with SCF increased the frequency of colonies containing megakaryocyte-committed progenitor cells with both types of blast colony. Neither interleukin 5 nor thrombopoietin significantly altered the number or total cell content of blast colonies or progenitor cell numbers in blast colonies from those stimulated by SCF alone. No correlation was observed between total progenitor cell content and the presence or absence of either eosinophil or megakaryocyte progenitors in either type of blast colony. The data argue against a random process as being responsible for the formation of particular committed progenitor cells or the possibility that lineage-specific regulators merely enhance survival of such committed progenitor cells formed in developing blast colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously described how T and natural killer (NK) lineage commitment proceeds from common T/NK progenitors (p-T/NK) in the murine fetal thymus (FT), with the use of a clonal assay system capable of discriminating p-T/NK from unipotent T or NK lineage-committed progenitors (p-T and p-NK, respectively). The molecular mechanisms controlling the commitment processes, however, are yet to be defined. In this study, we investigated the progenitor activity of FT cells from Id2−/− mice that exhibit defective NK cell development. In the Id2−/− FT, NK cells were greatly reduced, and a cell population that exclusively contains p-NK in the wild-type thymus was completely missing. Id2−/− FT progenitors were unable to differentiate into NK cells in IL-2-supplemented-FT organ culture. Single progenitor analysis demonstrated that all Id2−/− fetal thymic progenitors are destined for the T cell lineage, whereas progenitors for T/NK, T, and NK cell lineages were found in the control. Interestingly, the total progenitor number was similar between Id2−/− and Id2+/+ embryos analyzed. Expression of Id2 was correlated with p-NK activity. Our results suggest that Id2 is indispensable in thymic NK cell development, where it most probably restricts bipotent T/NK progenitors to the NK cell lineage.